
Dr. Lisa I. Pilkington

Design and illustrations by
Deborah Gutierrez

i

Welcome to R Module, a guide designed to get you using
R for your analysis in no time at all. This module does not
expect that you have had any previous experience with R
or programming/coding – we will show and teach you all
you need to know. Alternatively, if you have experience in
R, this should fill any knowledge gaps that you might have
and broaden your skill set.

R is one of the most popular and well-used statistical
softwares available. It is used globally and has extraordinary
scope in its functionality. It is for this reason that R is
increasingly becoming the software to use in all aspects of
statistical analysis. To know R will put you in a great position
for any future direction you choose – this module, and R, is
for everyone.

R Module has both written notes and accompanying videos
to suit all types of learning and be complementary to all
learning preferences. The videos have been created to show
you R in action, while the notes, especially the example
code, are comprehensive and detailed and available for
you to quickly and conveniently refer to whenever you
need. A range of asides and extra tips are also included to
highlight certain points and offer extra information if you
were interested in knowing more.

In addition to the analysis sections, R Module brings all the
aspects you are taught throughout to guide you in what
analysis techniques you should carry out (and in what
order) for your statistical analysis process. The analysis
depends on what data you have and what you want to find
out. Some worked examples go through the entire process
and you are also given some data sets to work through on
your own, applying your new skills and knowledge.

Hopefully you enjoy working through R module and find it
helpful!!

Preface

ii

Section 1: Getting Functional in R
	 I.	 Installing and setting up R and R Studio 	

	 II.	 Getting to know R and R Studio	

	 III.	 How to start a project and save your work in R

	 IV.	 Features in R

	 V.	 Data structures and entering data into R

	 VI.	 Exporting output from R

Section 2A: Basic Statistical Analysis
	 I.	 Outlier detection

	 II.	 Calculating descriptive statistics

	 III.	 Calculating confidence intervals

Section 2B: Basic Graphing: Data
 	 Visualisation
	 I.	 One-dimensional plots

	 II.	 Side-by-side plots

	 III.	 Scatter plots

Section 2C: Significance Tests
	 I.	 T-tests

	 II.	 F-test

	 III.	 ANOVA (Analysis of variance)

Section 2D: Regression Analysis
	 I.	 Unweighted linear regression

	 II.	 Weighted linear regression

	 III.	 Linear model graphics

	 IV.	 Non-linear regression

Outline:
1

2

2

3

5

8

11

13
14

14

15

16

17

21

24

25
26

27

28

29
30

30

31

33

iii

Section 3A: Using R for Unsupervised 		
 Learning
	 I.	 Data manipulation and large data set management

	 II.	 Hierarchical cluster analysis (HCA)

	 III.	 Principal component cluster analysis (PCA)

Section 3B: Using R for Supervised 	
 Learning
	 I.	 Creating training and test sets

	 II.	 Random forest models

	 III.	 KNN (k Nearest Neighbours) analysis

	 IV.	 Discriminant analysis

Section 4: Advanced Graphing/Visual
		 Representation
	 I.	 ggplot2 package – One-dimensional plots revisited

	 II.	 ggplot2 package – Side-by-side plots revisited

	 III.	 ggplot2 package – Regression revisited

	 IV.	 factoextra package – PCA plots revisited

Section 5A: Bringing it all Together
	 I.	 Statistics workflows

	 II.	 Worked examples

Section 5B: Moving Forward
	 I.	 Debugging your code, interpreting errors

	 II.	 Online community – R help forums

	 III.	 Available data repositories/recommended data sets

Index
	 I.	 By function

	 II.	 By package

36

37

38

39

41

42

42

44

45

48

48

53

56

57

59
59

62

75
76

76

76

80
80

81

iv

1

The main statistical software that you will need to use is R and its commonly used,
very user-friendly interface, RStudio. R is the computing "brains" and while you can
use it to do your work by itself, it is strongly recommended that you use R Studio,
which is an excellent working interface to complete your analysis.

R was originally developed in the early 1990’s
at the University of Auckland by Ross Ihaka
and Robert Gentleman. In 1995, R was made
publicly available as a free and open-
source software by Ihaka and Gentleman
and shortly after the R Development
Core Team was created to manage
the further development of R. R is
named partly after the first names
of Ihaka and Gentleman and
partly as a play on the name of
S, the original inspiration for
R’s programming language.

About R

Section 1:

Getting Functional
in R

>Click Here<

2

R Chemometrics Module

Part I

Part II

First of all, you will need to install R and RStudio in your
computer. You can follow the links below to complete this
part:

You should now have two R-related programs installed –
R and RStudio. As R is the computing "brains", in theory
you can run your code directly into this program, however
it is much better to use the RStudio interface, which will be
introduced in this section.

As mentioned in the video, there are four main sections/
components in the RStudio interface (these are also seen
in the picture below):

Workspace and
history: This section
is where you can see
any data that you
input into R, stored
and ready to use.

Code editor: This section is where you write and draft the code that you want
to subsequently run in the console. When you write your code in here, it will not
automatically run (unlike in the console, where you can directly write your code, but
it will automatically run), and instead you can make sure that it is correct before you
then run it. To run the code, have the blinking cursor on the line you want to run and
hit the "Run" button along the top bar of this section.

R console: This section is where the code runs, the output
of your analysis appears here as well.

Plots and files: This
section is where
any graphs that you
produce, will appear.
This section is also
where documentation
appears when you
search R for functions.

Getting to know R and RStudio

Installing and setting up R and RStudio

If you need to install R and
RStudio, please use this

video as a guide:

Firstly you need to set up your
RStudio interface – watch the video
at the link below that shows you how
to do this and also explains the
various sections or components
that you can view:

>Click Here<

- R: https://www.r-project.org

- RStudio: https://rstudio.com

https://youtu.be/vu3ZawcKIJY
https://youtu.be/QkQ9pdsK20U
https://youtu.be/QkQ9pdsK20U
https://www.r-project.org
https://rstudio.com

3

1 <- Getting functional in R

How to start a project and save your work Part III

When you start an analysis, you will want to create a new
project that you can have all the related data, code and files
in the one place. Projects can also be saved so you can
continue your work at a later session without any loss of
information.

As mentioned in the video, the first thing that you need to do is to create a Project. This
can be done by selecting the New Project command (available on the Projects menu
and on the global toolbar). At that point a pop-up will appear and you choose where
to create the project (normally a New Directory), select it as being a New Project and
then set up the directory in a folder.

Watch the video at the link below
that shows you how to create an
R project and also explains how
to save projects and code, open
projects and exit from a project:

>Click Here<

You can find
the New Project

command in
both of these

locations.

Or directly click
this shortcut.

t i p s

In the code editor, you can write notes and organise your code by
putting a # at the beginning of the line. Any line that has a hashtag
(#) at the front will not be passed to the console and will instead be
treated as text.

https://youtu.be/h0DIOaNAAaU

4

R Chemometrics Module

When you create a project in RStudio, the associated files are placed in the selected
directory. The new project is also loaded in RStudio – you can check this as the name
you have given it will appear in the Projects tool bar (found to the far right of the main
toolbar).

The last project that you had open in RStudio will be the project that is opened when
you start a new session in RStudio. To open a preexisting project that is not the one
currently loaded, there are a few ways to do this:

1) Select Open Project (available on the
Projects menu and on the global toolbar) and
then browse for, and then select, your desired
existing project; or

2) If the project is one you have recently worked
on, it will be in the list of most recently opened
projects, available on the Projects menu and on
the global toolbar ("Assignment" is the name of
a recent project on this device); or

3) Double click on the project in file explorer.

Click this to
opt for a new
directory to
choose the

location where
you want to

create your new
project.

>Click Here<

5

1 <- Getting functional in R

To save the code that you are
writing in the code editor, select
the save button either selecting
Save in the global tool bar
(accessed through selecting File)
or in the toolbar above the code
editor. The file, which you name in
the window that appears, will be
stored in the same directory as
your project.

The easiest way to save the rest of the elements in
your project is to select to exit from RStudio (or to go to
another project) and a pop-up will appear asking if you
want to save your workspace image – select Save and
all that you have done in that the project will be saved.

To exit from the project, you can select Close Project in
the projects menu (or exit from R).

Functions

mean(ExampleData)

Part IV

In R, three of the important features that allow you to
conduct analysis are Functions, Packages and Variables.

Watch the video that gives you
information about some of these
features, shows you how to search
for functions and how to install

packages:

Functions are structures in R that take a set of data, perform an action on it and
give you an output. This output could appear in the R console, or if the function is
programmed to produce a graph or plot, this will appear in the plots and files window
in the bottom right quadrant of RStudio.

Functions have names and the way they are used in R is to write its name, then in
brackets state the name of the data that you want R to perform the function on.

A simple example of a function is the function called "mean" (see Section 2A Part II a
for more information). If the following is run in R, you are instructing R to perform the
function called "mean" (which is to calculate the mean) on the data set "ExampleData".

Features in R

https://youtu.be/G5dhiNcc2hc

->->

6

R Chemometrics Module

?mean

??mean

or

The R documentation for this function will then appear in the Plots and Files window
in R Studio. The "?" option looks at the installed functions, while the "??" searches the
entire database of available functions to find a matching term.

The below screenshot is from looking up the documentation for the mean function.
When the command is run in the console (bottom left window), the documentation will
appear in the bottom right window.

The documentation may be a bit wordy or
difficult to understand at first but with practise
it becomes a lot easier to understand.

Sometimes functions require more details in addition to the name of the data that you
want to perform it on. An example of such a function, that you will see in a later section
is the t.test function which requires the data set, a value for mu and the confidence
level (see Section 2C Part I for more details).

Many functions have already been made by R programmers and are either already
available in R or can be loaded in by installing the package to which they belong (see
information about Packages below). You can also write your own function. An example
of how to create a function is in Section 2A Part III, where a function is built to calculate
95% confidence intervals.

To understand what a premade function does, you can read documentation about how
it works and the theory behind it. You can find the documentation by typing into the
console “?” or “??” then the function name. For example, to read the documentation for
the mean function, you would type either:

->->

7

1 <- Getting functional in R

CRAN is a worldwide network of servers that
stores identical and current versions of the code
and documentation required for R. CRAN is
managed and maintained by the R Foundation
and the R Development Core Team.

As mentioned in the text, CRAN is also the
storage and source for all the packages
you can access and use in R. CRAN
was first released and announced
in 1997, with 12 packages available.
In 2021 there are currently 17,379
available packages to use!

Anyone can contribute and
use packages to the CRAN
Repository.

Please note that PackageName is not the name of
a real package.

See the video and Section 2A Part I for an
example of a real package – installing and
using the outliers package.

Packages

Variables

All R functions and preloaded datasets are
stored in packages. Some packages are
preloaded into R, but you need to install others
to use them. There are thousands of packages
available for download (most at no cost). The
current full list of R packages is available here
(https://cran.r-project.org/web/packages/available_
packages_by_name.html). This list is made available
by the Comprehensive R Archive Network (CRAN).

Information and documentation about packages can be
found by selecting the package of interest at the above link.

If the package you want to use is not one that is preloaded
into R, you need to install it – this only needs to be done
once on a device. When you want to use the functions
available in a package, once it has been installed, you need
to load the package – this needs to be done every time you
open R and want to use the package.

To install and use a package in R, the code is:

In R, a variable is used to store information that functions and packages can manipulate
- it is a data structure. Variables are named and can store a range of different types
of information. The five main data/information types in R include; character, numeric,
integer, logical or complex numbers.

The most basic type of variable in R is a single item of data, i.e. if it is numeric, a single
value. The most common type of variable in R is a set of data/values i.e. a vector
(see below). Variables can also be a group of vectors or a combination of a range of
different structures available in R. The next section introduces the main data structures,
variables, that you will encounter in R.

install.packages("PackageName")

require("PackageName")

The term "install.packages("PackageName")" installs the "PackageName"
package in R – this only needs to be done once on a device.

The term "require("PackageName")" loads the "PackageName" package in R
– this needs to be done every time you open R and use the package.

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html

->->

8

R Chemometrics Module

Data structures and entering data into RPart V

Data structures

Importing/inputting data into R

Two of the main data structures that are used in R are vectors and Dataframes. A
vector is a single list of values or characters while a dataframe is a larger data set.
A dataframe is a combination of vectors bound together – this can be visualised by
thinking of vectors as columns in a table, with the table being a dataframe.

In R Module, there are two ways that you will be taught to
input data – one is inputting directly into R, while the other
is importing information from a file made in Excel.

These methods to import data are
both explained in a video at the

link below:

>Click Here<

As mentioned in the video, firstly, we will look at directly inputting the data into R – this
involves typing in the values, which are stored in R as vectors.

Say you have a list of values for a given measurement as follows:

The levels of chloride (in ppm) of 20 freshwater samples were as follows:

3, 4, 5, 8, 2, 6, 0, 1, 11, 6, 8, 7, 7, 7, 3, 9, 10, 4, 5, 1

This is a single vector of numbers and we can input it as such into R. The code for
inputting the data as a vector is as shown, where this example adds the list of 20
values and calls the vector "ExampleData" – this name, however, can be anything
that you like although it is advisable that you name it something logical.

To input data as a vector, the code is:

You can also store characters (i.e. letters or words) in a vector – this is useful for groups
in data frames – see "conditions" in the following example.

 ExampleData <- c(3,4,5,8,2,6,0,1,11,6,8,7,7,7,3,9,10,4,5,1)

 	 The term "ExampleData" is the name of the vector – this can be changed to
 	 whatever you want it to be.

 	 The term "<-c(...)" is essential each time, where;

		 "<-" assigns the vector to that name.

		 "c(...)" constructs the vector.

	 Each number (or character) is separated by a comma.

https://youtu.be/ee7iKpc3Nmk

9

1 <- Getting functional in R

tips

The percentage sugar content in a range of Manuka honeys from different
suppliers, as determined by using a refractometer, is given in the table below.

As mentioned above, vectors are a single list of values/characters, while dataframes
are a series of vectors. The code for inputting a vector is above. One way you can
create a dataframe in R, is add the vectors in separately and then "bind" them together.

An example of when you would need to do this is when you have a scenario as follows:

sugar content
(measurement)

supplier
(i.e. conditition)

85.4 A
86.9 A
89.1 A
88.4 A
87.3 A
88.7 A
90.3 B
85.4 B
88.2 B
81.0 B
79.3 B
87.7 B
83.1 C
82.4 C
81.0 C
78.7 C
79.5 C
82.0 C

It is recommended that you name your data with meaningful names
related to the data that it portrays – this will come in handy when
you are dealing with multiple sets of data. In this case, a good name
would have been something like: chorideLevel

Also, when your chosen name has two words, DO NOT include
a space in the name, instead capitalise each word, e.g. instead of
"example data", name your vector "ExampleData".

A valid name can consist of letters, numbers and dot (.) or underline
(_) characters. No other special characters (or spaces, as mentioned
above), are allowed.

It should also be noted that R is capitals-sensitive, e.g. R considers
exampledata to be different to ExampleData, so please be careful
of this – it is a common and easy mistake to make!

->->

10

R Chemometrics Module

To add the information in this table, the code can be found below, where the two
vectors "measurements" and "conditions" are added in separately, then bound
together as columns in a dataframe called "ExampleDataframe.df".

The names of the vectors used in the example code below are purposefully non-
specific to make it easier for you to apply the code to your own question/situation. In
theory, I should have named the "measurement" vector as "sugarContent" and
the "condition" vector as "supplier" to best represent the data.

Given you have already constructed two vectors called "measurements" and "conditions", like
the following;

t i p s

In addition to the naming conventions described in the previous tips,
it is often recommended that you also indicate what kind of structure
the data has, in its name. Vectors traditionally do not have this, but
other structures, like dataframes do. Dataframes are often indicated
by including ".df" at the end of its name, e.g. "ExampleDataframe.
df".

measurements <- c(85.4, 86.9, 89.1, 88.4, 87.3, 88.7, 90.3, 	
85.4, 88.2, 81.0, 79.3, 87.7, 83.1, 82.4, 81.0, 78.7,
79.5, 82.0)
conditions <- c("A","A","A","A","A","A","B","B","B","B",
"B","B","C","C","C","C","C","C")

 To combine two (or more) vectors into a single data frame, the code is:

ExampleDataframe.df<-data.frame(measurements, conditions)

The term "ExampleDataframe.df" is the name of the dataframe you are creating.

The term "<-data.frame(...)" is essential each time, where;

	 "<-" assigns the dataframe to the specified name.

	 "data.frame(...)" constructs the dataframwith the specified vectors (in this
	 case the vectors are called measurements and conditions). The name of
	 each vector is separated by a comma.

->->

11

1 <- Getting functional in R

The second way in which data can be input into R is through importing an excel file.
The best type of excel file to input is a .csv file, so please only try to import files of that
type. Firstly, you need to get the excel file looking like you want it to look (this can be
any number of rows or columns), and then:

To input data from an Excel (.csv) file, the code is:

Regardless of whichever method you use, you should always inspect what your data
looks like in R, to make sure it has been input/imported correctly. You can do this
by either typing in the name in the console, pressing enter and it will appear in the
console. The other way that you can use to check dataframes is by clicking on the
name of the vector/dataframe in the top right window and it will appear where the R
script window is (the top left).

Exporting output from RPart VI

The results of your analysis in R can be easily exported to
other documents. You can either export individual pieces of
output that you produce, into a separate document, or you
can ask R to produce an editable document with both the
code you used and the output you generated.

Watch the video at the link below
that gives you information about
the ways to export output that

you produce in R:

>Click Here<

To export individual output

Console: The easiest way to export output that appears in the console is to copy and
paste the numerical output to the document that you are working in.

This command opens up a file explorer window (you will either see this pop up in front,
like in the video, or it will open up another RStudio tab that you be able to open on the
computer taskbar) and you select the .csv to be imported.

ExampleInput.df <- read.table(file.choose(), sep=",",
header = TRUE)

The term "ExampleInput.df" is the name of the dataframe you are creating.

The term "<-read.table(file.choose(), sep=",", header = TRUE)" instructs
R that you want to import a file of your choosing and is essential each time.

	 "<-" assigns the dataframe to that name.

	 "read.table(file.choose(), sep=",", header = TRUE)" can be broken
	 down further into its parts:

		 "read.table(...)" is saying to read in a "table" of data from a file
		 into R.

		 "file.choose()" is saying that you want to choose the file to add.

		 "sep=","" is saying that the separator between values is a comma (as
		 you are inputting a comma separated value (.csv) file.

		 "header = TRUE" is saying that in the file you are adding, you have 	
		 headers, i.e. the first row of the file is not data, but column headings.

https://youtu.be/n1RJpxUTE1E

R Chemometrics Module

Graphs and plots: Figures that appear in the Plots and Files window can be exported/
saved in a number of ways:

1) In the plot toolbar, click Zoom,
which opens up the plot in a
separate window . Right-click on
the graph/plot and select to either
copy the image (to then paste it in
your document) or save the image;
or

2) In the plot toolbar, there is an
option to Export– select this and
you can save the graph as an
image or pdf.

To produce an editable document with code and output

In the File tab in the global toolbar, select "Knit document" which gives you the option of
producing a HTML, PDF or MS Word document. A MS Word file is highly recommended as you
can then easily edit the file. Select which file type you want to produce and then select Compile.
The output file will appear in the folder that your project is stored in.

If you have input data from an Excel file in your code, once you ask R to compile, a window
will appear, in which you will needto find and select the data file. Also, in case you have an
install.packages() command in your code, remove before compiling the document.

t i p s

This is the best way to produce your analysis for an assignment or
task as this gives both the output and the code used to generate it,
in one document.

12

13

Section 2A:

Once you have input your data into R, there is
a huge range of different analyses that you can
do. This section will focus on many of the basic
analyses of single sets of data that you would do
when you first start your analysis - assessing if
there are any outliers in the data set (that would
need to be removed) and calculating descriptive
statistics and confidence intervals.

A video to accompany the notes
given in this section, given below,

can be found here:

>Click Here<

Basic Statistical
Analysis

https://youtu.be/7R30a-yEegw

->->

->->

14

R Chemometrics Module

Part I Outlier detection

The first thing that you should do for most data types when you start your data analysis
process is determine if there are any outliers. In fact, it is preferable that this is actually
done when you are taking your measurements (so if you need to discard an outlier, you
are able to measure another data point to replace it) but this is not always possible,
particularly if you have limited time or are given the data to analyse.

In R Module we will go through two different outlier tests – the Dixon’s Q-test and the
Grubbs test, both of which can be performed using R:

To conduct outlier tests in R, the code is:

To calculate descriptive statistics, the code is:

The line "install.packages("outliers")" installs the "outliers" package in R – this
only needs to be done once on a device.

The line "require("outliers")" loads the "outliers" package in R – this needs to be
done every time you open R and use the package.

The term "dixon.test(...)" instructs R to perform a Dixon’s Q-test on the specificed
vector (in this case the vector is called ExampleData).

The term "grubbs.test(...)" instructs R to perform a Grubb’s test on the specified
vector (in this case the vector is called ExampleData).

The term "mean(...)" instructs R to calculate the mean of the values of the specified
vector (in this case the vector is called ExampleData).

The term "sd(...)" instructs R to calculate the standard deviation of the values of the
specified vector (in this case the vector is called ExampleData).

The term "var(...)" instructs R to calculate the variance of the values of the specified
vector (in this case the vector is called ExampleData).

The output from the tests will show up in the console, which you will then be able to
interpret.

As for the outlier tests, the output values for these calculations appear in the console.

Part II Calculating descriptive statistics

Once you have determined if there are any outliers in the data (and removed them/
corrected them if there are), you can move on to calculating descriptive statistics
(mean, standard deviation, variance), using R:

mean(ExampleData)
sd(ExampleData)
var(ExampleData)

install.packages("outliers")
require("outliers")
dixon.test(ExampleData)
grubbs.test(ExampleData)

->->

15

2A <- Basic Statistical Analysis

Calculating confidence intervalsPart III

See Section 1 Part IV for an introduction to
functions. All of the functions that you can use in
R have been made like the confidence interval
function that you see here.

To calculate a confidence interval in R, there is
no available pre-made function, like there is for
calculating the mean and standard deviation, so
I have constructed a function called "confidence.
interval". Once you load in the function, you will not
need to do so again in your session/project.

As you can see, a lot of code and actions can be included in a function. Fortunately, by
creating functions we do not have to write all this code out each time, instead we only
need to write out the command to use the function and specify the data (and other
details, if required), to use it.

The code that you need to input into R to create the function is as follows: 	

Once this function has been input into R, to calculate the 95% confidence interval, the code is:

confidence.interval <- function(vector) {
xbar <- mean(vector)
s <- sd(vector)
n <- length(vector)
se <- s/sqrt(n)
t <- qt(0.975,df=n-1)
margerror <- se*t
lower <- xbar-margerror
upper <- xbar+margerror
cat("The 95% confidence interval is (",lower,",",upper,")")
}

confidence.interval(ExampleData)

The term "confidence.interval(...)" instructs R to use the function we have constructed
to calculate the 95% confidence interval of the values of the specified vector (in this case
the vector is called ExampleData).

You do not need to understand the code in the function. If you copy and paste the
function above, and then use it, the confidence interval will be calculated and appear
in the console.

16

One of the first steps that you should do before
you conduct more-extensive analysis is to graph
your data. This allows you to visualise your data
and consequently learn a lot about your data that
descriptive statistics alone will not necessarily tell
you. The importance of this is particularly shown
using the Datasaurus data available in a package
in R.

A video to accompany the notes
given in this section, given below,

can be found here:

The Datasaurus data package contains 13 sets of x-y data, with each set
having very similar descriptive statistics (i.e. almost identical mean of x, mean
of y, standard deviation of x, standard deviation of y, and Pearson correlation
between x and y). If you were to just look at the descriptive statistics, you
would say that the data sets are essentially the same. However, when you
graph the data set using scatter plots, it becomes very clear that each set
looks very different!

Section 2B:

Basic Graphing/
Data Visualisation

>Click Here<

https://youtu.be/IQCocLqH054

->->

17

2B <- Basic Graphing/Data Visualisation

The best graph to use to visualise your data
depends on what kind of data you have:

If you have x-y data (i.e. like the data
above), then a scatter plot (see Part III).

Part I One-dimensional plots

One-dimensional dot plots (sometimes known as strip charts) and box plots are
excellent for visualising single data sets. Dot plots, in particular are good for small data
sets.

To generate a one-dimensional dot plot, the code is: 	

stripchart(ExampleData, pch = 19, method = "stack", main = 	
	 "ExampleData", xlab = "x-axis label", ylab = "y-axis label")

The term "stripchart(...)" instructs R to create a one-dimensional dotplot of the
specified vector (in this case the vector is called ExampleData).

	 "pch = 19" states the type of symbol that should be used in the plot. See tip over
	 the page.

	 "method = "stack"" states that the symbols should be stacked on top
	 of each other for repeated values.

	 "main = "ExampleData"" says what the main title of the graph should be,
	 in this case I have titled it simply; ExampleData.

	 "xlab = "x-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; x-axis label.

	 "ylab = "y-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; y-axis label.

When this code is run,
the graph will appear
in the plot window, in
the bottom right panel
in RStudio. The plot
generated by the above
code can be found on
the right:

If you have a single set of values i.e. a
vector of numbers, a one-dimensional
dotplot (for small sample sizes, see Part I)
or a box and whisker/bar plot (for medium
to large sample sizes is recommended).

If you have sets of values that you want to
compare, you can plot these plots side-
by-side (see Part II).

The graphs in this section are made using the
basic functions in packages preloaded into R.
There are other packages available that have
far more flexibility and options (and many say
produce graphs that are much nicer-looking!)
for graphing. One of the most widely-used
of these packages is ggplot2 which will be
covered in Section 4, along with other useful
graphing packages.

->->

18

R Chemometrics Module

t i p s

R has a range of symbols that you can use in your graphics. These
are stipulated for your graph using the pch part of the code. There
are 25 possible symbols to choose from. To change the symbol in
the graph, just state pch = the corresponding number (in the last
example, the number was 19, corresponding to the filled-in circle).

A boxplot can be produced using very similar code, omitting some of the components
and changing the type of plot you want to produce in the command:

To generate a one-dimensional boxplot, the code is:

boxplot(ExampleData, main = "ExampleData", xlab = "x-axis 		
	 label", ylab = "y-axis label", col = "steelblue")

The term "boxplot(...)" instructs R to create a boxplot of the specified vector (in this
case the vector is called ExampleData).

	 "main = "ExampleData"" says what the main title of the graph should be,
	 in this case I have titled it simply; ExampleData.

	 "xlab = "x-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; x-axis label.

	 "ylab = "y-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; y-axis label.

	 "col = "steelblue"" says what the colour the boxplots should be.
	 This can be any range of colours (see tip).

When this code is run, the
graph will appear in the plot
window, the bottom right panel
in RStudio. The plot generated
by the above code can be
found on the right:

0:	 1:	 2:	 3:	 4:	 5:	 6:	 7:	 8:

9:	 10:	 11:	 12:	 13:	 14:	 15: 16:	 17:

18:	 19:	 20:	 21:	 22:	 23: 24: 25:

->->

19

2B <- Basic Graphing/Data Visualisation

When this code is run, the graph
will appear in the plot window, the
bottom right panel in RStudio. The
plot generated by the above code
can be found on the right:

t i p s

R has a range of colours that you can use in your graphics (like
steelblue in the example about). To see all the available colours, type
into R: colors() and all the names of the colours will be listed. To
change the colour of the box in this graph, just replace the word in
the speechmarks (i.e. "steelblue") with the name of your desired
colour, e.g. "orangered".

Popular colours with appropriate contrast include:

•	 steelblue

•	 darkcyan

•	 orangered

•	 mediumorchid1

•	 deeppink2

•	 goldenrod

Histograms and density plots (and box plots)
are best used for larger data sets and are
excellent at showing the distribution of the
data. A similarly formatted command is needed
for histograms:

If you do not specify particular requirements about
components (i.e. what colour you want the bars
to be filled in, as shown in the boxplot above
and how you could do for the histogram here
by typing in "col = "..."") then the default
colour will be used, which is typically
either grey or no colour, for these graphs
in the stats package.

To generate a histogram, the code is:

hist(ExampleData, main = "ExampleData", xlab = "x-axis label",
ylab = "y-axis label")

The term "hist(...)" instructs R to create a boxplot of the specified vector (in this case
the vector is called ExampleData).

	 "main = "ExampleData"" says what the main title of the graph should be,
	 in this case I have titled it simply; ExampleData.

	 "xlab = "x-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; x-axis label.

	 "ylab = "y-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; y-axis label.

->->

20

R Chemometrics Module

Density plots will provide similar data distribution information as histograms, but give a
smoother distribution. The code to produce a density plot has two commands:

To generate a density plot, the code is:

dens <- density(ExampleData)

plot(dens, col = "deeppink2", main = "ExampleData", xlab
= "x-axis label", ylab = "y-axis label")

The term "plot(...)" instructs R to create a boxplot of the supplied densities (in this
case the densities are stored as dens).

	 "main = "ExampleData"" says what the main title of the graph should be,
	 in this case I have titled it simply; ExampleData.

	 "xlab = "x-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; x-axis label.

	 "ylab = "y-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; y-axis label.

	 "col = "deeppink2"" says what the colour of the line density plot should
	 be. This can be any range of colours - see tip.

The term "dens<-density(...)"instructs R to calculate the density values of the
specified vector (in this case the vector is called ExampleData), giving the distribution.

	 R stores these densities as dens.

The above code gives a density plot that looks as follows:

->->

21

2B <- Basic Graphing/Data Visualisation

To generate a side-by-side boxplot from two or more data vectors, the code is:

boxplot(ExampleDataA, ExampleDataB, ExampleDataC, names=
c("Example Data A","Example Data B", "Example Data C"),
main = "ExampleData", xlab = "x-axis label", ylab =
"y-axis label")

The term "boxplot(...)" instructs R to create a boxplot of the specified vectors (in this
case the vectors are called ExampleDataA, ExampleDataB and ExampleDataC).

	 "names = c("Example Data A","Example Data B", "Example Data C")"
	 says what the names you want each of the boxes to be called, on the x-axis.

	 "main = "ExampleData"" says what the main title of the graph should be,
	 in this case I have titled it simply; ExampleData.

	 "xlab = "x-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; x-axis label.

	 "ylab = "y-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply;av y-axis label.

Part II Side-by-side plots

If you are comparing two or more single data sets (or a data that has different values
for a given factor), to see what they look like compared to eachother/the effect of the
factor, it is a good idea to produce side-by-side plots, i.e. boxplots or dot plots.

If you have two (or more) different data set vectors, side by side boxplots can be
produced very simply by using the same code as earlier for one-dimensional plots, but
specifying all the data vectors you want to plot, as is shown in the below code:

The plot generated by the above code can be found below:

->->

22

R Chemometrics Module

If you have a dataframe with numerical data as one column and a factor in another (i.e.
the ExampleDataframe.df shown earlier in Section 1 Part V, where measurements
is the numerical vector and conditions is the grouping factor/variable), side by side
boxplots can be produced using a variation of the earlier code:

To generate a side-by-side boxplot from two or more data vectors, the code is:

boxplot(measurements~conditions, data = ExampleDataframe.
df, main = "ExampleData", xlab = "x-axis label", ylab =
"y-axis label")

The term "boxplot(...)"instructs R to create a boxplot of the specified numerical vector
(in this case the vector is called measurements) with a separate box for each level/group
of the categorical vector (in this case the vector is called conditions), with both of
these vectors in a dataframe (in this case the data frame is called ExampleDataframe.
df).

	 "main = "ExampleData"" says what the main title of the graph should be,
	 in this case I have titled it simply; ExampleData.

	 "xlab = "x-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; x-axis label.

	 "ylab = "y-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; y-axis label.

The plot generated by the above code can be found below:

->->

23

2B <- Basic Graphing: Data Visualisation

To generate a side-by-side dotplot from data in a dataframe, the code is:

stripchart(measurements~conditions, data = ExampleDataframe.df,
	 pch = 19, method = "stack", main = "ExampleData", xlab = "x-axis label",
	 ylab = "y-axis label")

The term "stripchart(...)"instructs R to create a dotplot of the supplied numerical
vector (in this case the vector is called measurements) with a separate group for each
level/group of the categorical vector (in this case the vector is called conditions),
with both of these vectors in a dataframe (in this case the data frame is called
ExampleDataframe.df).

	 "pch = 19" specifies the type of symbol/dot that should be used in the plot.

	 "method = "stack"" specifies that the symbols should be stacked on top
 	 of each other for repeated values.

	 "main = "ExampleData"" says what the main title of the graph should be,
	 in this case I have titled it simply ExampleData.

	 "xlab = "x-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply x-axis label.

	 "ylab = "y-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply y-axis label.

To do the same as above i.e. when you have a dataframe with numerical data as one
column and a factor in another (e.g. the ExampleDataframe.df shown earlier in
Section 1 Part V, where “measurements” is the numerical vector and “conditions”
is the grouping factor/variable), side by side dotplots can be produced using a variation
of the earlier code:

The plot generated by the above code using the ExampleDataframe.df data, can
be found below:

->->

24

R Chemometrics Module

Scatter plotsPart III

If you have x-y data (i.e. like the data in the
Datasaurus example), then a scatter plot is
an excellent way to visualise the relationship
between these two numerical data sets.

If you have x-y data, the two data sets you will either
be given it in a file format that you can import into R as
a dataframe or you can input the data vectors separately
and combine them as two columns in a dataframe (see
Section I Part V).

When you plot the results of regression models,
this is done using a scatter plot. To the scatter
plots, the line of the model that you fit can be
added to this plot (see Section 2D Part III
and Part IV).

When you want to select columns in dataframes,
you do so using a $ symbol.

An example is shown in the code –
by writing ExampleRDataframe.
df$xvariable, we are selecting a
specific column called xvariable
in the ExampleDataframe.df
dataframe.

To plot x-y data using a scatter plot, the code is:

plot(ExampleRDataframe.df$xvariable, 		
	 ExampleRDataframe.df$yvariable, main = "ExampleData",
	 xlab = "x-axis label", ylab = "y-axis label")

The term "plot(...)" asks R to plot the two quantitative variables (in this case
"xvariable" and "yvariable") from a dataframe (in this case the dataframe is called
"ExampleRDataframe.df"), with the first variable written being the variable on the
x-axis and the second variable being the variable on the y-axis.

	 "main = "ExampleData"" says what the main title of the graph should be,
	 in this case I have titled it simply; ExampleData.

	 "xlab = "x-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; x-axis label.

	 "ylab = "y-axis label"" says what the main title of the graph should be,
	 in this case I have titled it simply; y-axis label.

To see what this would look like with example data, see Section 2D Part III which uses
the same code as shown above.

It is important to note that these tests assume
that the data is normally distributed. This is not
always the case, so it is important to check
for this before you run these tests. The
distribution of the data can be assessed
by graphing techniques detailed in the
previous section (Section 2B Part I and
Part II).

There are a range of statistical
significance tests, where data is
tested against a null hypothesis,
these tests include:

A video to accompany the notes
given in this section, given below,

can be found here:

>Click Here<

t-tests

one-sample t-test

two-sample t-test (not-
significantly different variances)

two-sample t-test (significantly
different variances)

paired-data t-test

f-test

ANOVA

R can conduct all of these tests for you, as will be shown in this section.

Section 2C:

Significance
Tests

https://youtu.be/AIxTmpIorVM

->->

->->

26

R Chemometrics Module

Part I T-tests

All t-tests in R use the same general code, with subtle variations depending on the
type of t-test that you want to conduct.

The simplest situation is where you have one set of values (in R, as stated previously,
they will be stored as a vector) and you are doing a one-sample t-test, assessing to
see if the mean of the values is significantly different to a given value. Once the vector
of values has been input into R, a one-sample t-test is conducted by the following:

To conduct a one-sample t-test, the code is:

To conduct a two-sample t-test where the variances of the data sets are not significantly
different, the code is:

t.test(ExampleData, mu = 0, conf.level = 0.95)

t.test(ExampleDataA, ExampleDataB, var.equal = TRUE,
	 conf.level = 0.95)

The term "t.test(...)" instructs R to conduct a t-test.

	 "ExampleData" specifies the name of the vector undergoing the t-test.

	 "mu = ..." specifies the value is being are testing if the mean is equal to (in this
	 case, this is 0).

	 "conf.level = 0.95" specifies the confidence level. As part of the output for
 	 the t-test, R will give a confidence interval for the mean based on this confidence
	 level. This will almost always be 95% (conf.level = 0.95), unless otherwise
	 stated.

The term "t.test(...)" instructs R to conduct a t-test.

	 "ExampleDataA" and "ExampleDataB" specify the names of the vectors for
	 the t-test.

	 "var.equal = TRUE" is saying that the variances of the two data sets are not
	 significantly different.

	 "conf.level = 0.95" specifies the confidence level. As part of the output for
	 the t-test, R will give a confidence interval for the differences between the means
	 based on this confidence level. This will almost always be 95% (conf.level =
 0.95), unless otherwise stated.

The output from this will appear in the console window, which will include a range of
information, including the t-test statistic, p-value and a confidence interval. Examples
of R output and how to interpret them are covered separately (i.e. in lectures).

The next examples of t-tests that you need to know are two-sample t-tests. These are
t-tests that determine if two different sets of values have means that are significantly
different to each other. There are two types of two-sample t-tests – when the variances
of the two data sets are significantly different and when they are not significantly
different. The test to see if variances are significantly different is an F-test (see more
about how to do this in Part II of this section).

To carry out two-sample t-tests in R, the code is very similar for the two types, with
only one difference:

->->

->->

->->

2C <- Significance Tests

To conduct a two-sample t-test where the variances of the data sets are significantly different,
the code is:

To conduct a paired t-test, the code is:

t.test(ExampleDataA, ExampleDataB, var.equal = FALSE,
	 conf.level = 0.95)

t.test(ExampleDataA, ExampleDataB, paired = TRUE,
	 conf.level = 0.95)

The term "t.test(...)" instructs R to conduct a t-test.

	 "ExampleDataA" and "ExampleDataB" specify the names of the vectors for
	 the t-test.

	 "var.equal = FALSE" is saying that the variances of the two data sets are
	 significantly different.

	 "conf.level = 0.95" specifies the confidence level. As part of the output for
	 the t-test, R will give a confidence interval for the differences between the means
	 based on this confidence level. This will almost always be 95% (conf.level =
 0.95), unless otherwise stated.

The term "t.test(...)" instructs R to conduct a t-test.

	 "ExampleDataA" and "ExampleDataB" specify the names of the vectors for
	 the t-test.

	 "paired = TRUE" is saying that the two data sets are paired and the t-test
	 should be a paired t-test.

	 "conf.level = 0.95" specifies the confidence level. As part of the output
	 for the t-test, R will give a confidence interval for the mean of the differences
	 based on this confidence level. This will almost always be 95% (conf.level =
 0.95), unless otherwise stated.

The last type of t-test is a paired sample t-test. As for the two-sample t-tests, there are
two data vectors, but the code is slightly different:

Part II F-test

As stated above, F-tests are used to assess if the variances of two different data sets
are significantly different, or not. An F-test should be performed prior to a two-sample
t-test – the results of the F-test inform you which two-sample t-test you should do.

To conduct an F-test, you can do the following:

To conduct an F-test, the code is:

var.test(ExampleDataA, ExampleDataB, conf.level = 0.95

The term "var.test(...)" instructs R to conduct a F-test.

	 "ExampleDataA" and "ExampleDataB" specify the names of the vectors for
	 the F-test.

	 "conf.level = 0.95" specifies the confidence level. As part of the output
	 for the t-test, R will give a confidence interval for the differences between the means
	 based on this confidence level. This will almost always be 95% (conf.level =
 0.95), unless otherwise stated.

27

->->

28

R Chemometrics Module

ANOVA (Analysis of Variance)Part III

The last type of statistical test that you should know is ANOVA (Analysis of Variance).
The way that we do this in R is slightly different to the t-tests and F-test. For this test,
we also need to use a data frame, as opposed to different vectors. This data frame will
typically have a column for the numbers/values/measurements and another column
that represents the grouping variable. An example of this is the data table referred
to earlier when introducing data frames – the "measurements" column contains
information about the numbers/values that you are assessing and the "conditions"
column is the grouping variable (see Section I Part V). Once the data frame is in R,
ANOVA can then be carried out, where first you need to fit a linear model and then you
run the analysis on the model:

To conduct an ANOVA, the code is:

anovaexample <- lm(measurements~conditions, data = Example
	 Dataframe.df)

anova(anovaexample)

anovaexample.aov <- aov(measurements~conditions, data = Example
	 Dataframe.df)

TukeyHSD(anovaexample.aov)

The term "anovaexample" is the name of a linear model.

	 "<-lm(...)" instructs R to create a linear model, using two columns of data
	 – one column is the measurements/values (i.e. quantitative) and the other column
	 is the grouping variable (i.e. a qualitative variable) - in this case "measurements"
	 and "conditions" , respectively, in a dataframe (in this case the dataframe is
	 called "ExampleDataframe.df").

The term "anova(...)" instructs R to conduct an ANOVA analysis on the relationship that
you defined as your linear model (in this case, the linear model is called "anovaexample").

The term "aov(...)" instructs R to compute the analysis of variance of the model and
save it as an aov data structure) in this case the aov file is called anovaexample.aov).

The term "TukeyHSD(...)" instructs R to calculate a set of confidence intervals on
the differences between the means of the levels of a factor with the specified family-
wise probability of coverage. The intervals are based on the Studentised range statistic,
Tukey’s ‘Honest Significant Difference’ method. This is done using the aov data file which
holds the results of the analysis of variance of the model (in this case, the aov data file
is called "anovaexample.aov"). This function requires an aov data structure, which
is why this is made and used for getting the Tukey HSD intervals, instead of the linear
model made earlier.

This code will produce output in the console that you can then interpret.

29

A video to accompany the notes
given in this section, given below,

can be found here:

R is also very useful for displaying, modelling and
analysing relationships between two quantitative
variables.

Sulfaguanidine is a sulfonamide used to treat a range of bacterial infections,
particularly in veterinary medicine. The following results were obtained during

the analysis of sulphaguanidine by spectrofluorimetry:
Sulphaguanidine

concentration (mg/L)
Intensity

0 (blank) 43
0.05 62
0.10 79
0.15 101
0.20 118
0.25 145
0.30 161

An example of when you would need to do this is
when you have a scenario as follows:

The x-variable is the explanatory/independent variable that you control (in this case
it would be the sulphaguanidine concentration) and the y-variable would be the
measured/dependent variable (in this case it would be the intensity).

The names of the vectors used in the example
code below are purposefully non-specific to
make it easier for you to apply the code to your
own question/situation. In theory, I should
have named the "yvariable" vector as
"intensity" and the "xvariable"
vector as "sulphaguanidineConc"
to best represent the data.

Section 2D:

Regression
Analysis

>Click Here<

https://youtu.be/UKZOY2RXJ1I

->->

->->

30

R Chemometrics Module

Part I Unweighted linear regression

If the relationship between the variables is a linear relationship, a linear model can be
fit and information can be gained from analysing the resultant equation that represents
this relationship.

To fit a linear relationship between two quantitative variables in R, both of these
variables are input as columns in a dataframe. A linear model is then fit to the data
and you can view the specifics of the equation that represents this model. This can be
done by the following:

To fit an unweighted linear model, the code is:

lmExample.lm <- lm(yvariable~xvariable, data = ExampleRData
	 frame.df)

summary(lmExample.lm)

 The term "<- lm(...)" instructs R to create a linear model (in this case "lmExample.
lm"), using two columns of quantitative data (in this case "yvariable" and "xvariable"
in a dataframe (in this case the dataframe is called "ExampleRDataframe.df")).

The term "summary(...)" instructs R to provide information on the linear model between
your the variables (in this case, the linear model is called "lmExample.lm").

Part II Weighted linear regression

While unweighted linear models are most common, sometimes unweighted linear is
not appropriate for the data. This is commonly because the datapoints do not have
equal uncertainty. Fortunately, fitting weighted linear models in R is very similar to
fitting an unweighted linear model.

The first step that is required is that you need to create a vector of weights that you
want to be applied. In this module there are two possible weightings shown that you
could apply to your data.

To create a weighting vector for when the weighting is the reciprocal of the x-value, the code is:

To create a weighting vector for when the weighting is the reciprocal of the standard deviation
of the y-value, the protocol is to first fit an unweighted regression (as in Section 2D, Part I) and
then calculate the ith squared residual as an estimate of the standard deviation2, the code is:

weightsLm<-1/(ExampleRDataframe.df$xvariable)

weightsLm<-1/lm(abs(lmExample.lm$residuals)~lmExample.
	 lm$fitted.values)$fitted.values^2

The term "1/(ExampleRDataframe.df$xvariable)" asks R to calculate the
reciprocal of each of the x-values and store this as a new vector called weightsLm.

The term "1/lm(...)" asks R to calculate the reciprocal of the ith squared residual from
the unweighted linear model that was fit earlier (in this example called lmExample.lm),
to each of the y-values and store this as a new vector called weightsLm.

->->

->->

31

2D <- Regression Analysis

Once you have calculated the vector of the weights, the next step is to fit the weighted
linear model. This is very similar to fitting the unweighted linear model, with the only
thing changing being that you add an extra weights term:

To fit a weighted linear model, the code is:

To graph a linear model and calibration curve, the code is:

wlmexample.lm<-lm(yvariable~xvariable, weights = weightsLm,
	 data = ExampleRDataframe.df)

summary(wlmexample.lm)

plot(ExampleRDataframe.df$xvariable, ExampleRDataframe.df$
	 yvariable, main = "Calibration Plot", xlab = "X-Variable",
	 ylab = "Y-Variable"

abline(lmExample.lm, col = "blue")

The term "<-lm(...)" instructs R to create a linear model (in this case called "wlmexample.
lm"), using two columns of quantitative data (in this case "yvariable" and "xvariable"
in a dataframe (in this case the dataframe is called "ExampleRDataframe.df")) and
apply a weighting (weightsLm in this case).

The term "summary(...)" instructs R to provide information on the equation that
represents the weighted linear relationship between your two variables in the linear
model (in this case, the linear model is called "wlmexample.lm").

The term "plot(...)" asks R to plot the two quantitative variables (in this case
"xvariable" and "yvariable" in a dataframe (in this case the dataframe is called
"ExampleRDataframe.df")), with the first variable written being the variable on the
x-axis and the second variable being the variable on the y-axis.

	 "main = "Calibration plot", "xlab = "X-variable"", "ylab =
	 "Y-variable"" give the main title and the x-axis and y-axis labels.

The term "abline(...)" plots the linear model (in this case lmexample.lm) that has
been calculated previously – see Part I or Part II of this section. This command will plot
a line on the plot that is active in the plot window.

	 "col = "blue"" says what the colour of the line should be. This can be any
	 range of colours.

Linear Model GraphicsPart III

Once you have fit a (weighted or unweighted) linear model, you will need to graphically
represent it – this can also be done using R:

->->

32

R Chemometrics Module

For the example data, the above code will give the following plot:

Once a linear model has been fit to our data, one of the key ways to assess the model
to see if it is appropriate is to plot the residuals of the model. To do so, you would use
this code:

To plot the residual plot of a linear model, the code is:

plot(residuals(lmExample.lm))

The term "plot(...)" asks R to plot the residuals of the fitted linear model (in this
case called lmxample.lm) that has been calculated previously – see Part I of this
section.

Residuals should be random and of
constant variance and not have a
notable trend or pattern. An example
of residual plot that indicates the linear
model is an appropriate fit would be:

This is essentially a one-dimensional dot plot (but
of the residuals) hence why you use a different

function to the one described in Section 2B.

33

2D <- Regression Analysis

Non-linear regressionPart IV

Using R, you can fit a non-linear regression model, using the Gauss-Newton method.
Before you fit the model, it is recommended that you plot the two variables to view their
relationship. This can be done by using the code from Section 2B Part III.

To fit a non-linear regression model, you need to have the general equation that
explains the relationship between the x and y variables which includes any unknown
parameters as letters. An example of this kind of situation is described below:

The relationship between vapour pressure (Pres, in Torr) and the temperature
(Temp, in degrees Celcius) can be described using the Antoine equation:

The vapour pressure (Pres) for ethanol was measured for a range of different
temperatures (Temp) and the resulting data is given in the table below:

Where a, b and c are parameters specific to a particular chemical. This above
equation can be rearranged to give the following relationship between Pres

and Temp:

temperature pressure

0 12
5 19
10 24
15 33

20 45
25 60
30 79
35 105
40 135
45 175
50 222
55 280
60 350
65 437
70 542
75 663
80 810
85 979
90 1180
95 1410

Estimates of the values for a, b and c are: a = 10, b = 1500, c = 200

->->

->->

34

R Chemometrics Module

The x-variable is the explanatory/independent
variable that you control (in this case it would
be the temperature) and the y-variable would
be the measured/dependent variable (in this
case it would be the pressure).

The names of the vectors used in the example
code below are purposefully non-specific to
make it easier for you to apply the code to your
own question/situation. In theory, I should
have named the "y" vector as "pressure"
and the "x" vector as "temperature" to
best represent the data.

To fit a non-linear model, the code is:

To plot the data with the non-linear model, the code is:

nlmexample.nls <- nls(y~10^(a-(b/(c + x)))),start = list(a = 10,
	 b = 1500, c = 200), data = ExampleNLRDataframe.df)

summary(nlmexample.nls)

plot(ExampleNLRDataframe.df$x, ExampleNLRDataframe.df$y,
	 main = "Non-linear Model Plot", xlab = "X-Variable", ylab =
	 "Y-Variable")

lines(ExampleNLRDataframe.df$x,predict(nlmexample.nls),
	 col="red", lwd = 2)

The term "<-nls(...)" instructs R to create a non-linear model (in this case called
"nlmexample.nls"), based on the given formula, using two vectors (in this case y and
x) in accordance with the formula and the names of the vectors that have been input into
R (these vectors are called x and y in the dataframe ExampleNLRDataframe.df).

	 "y~10 (̂a-(b/(c + x)))" is the formula describing the relationship between
	 the two numerical vectors, with unknown parameters a, b and c. This will change
	 for different relationships.

	 "start = list(...)" specifies the starting values for the unkown parameters to
	 be optimised (in this case a = 10, b = 1500 and c = 200).

The term "summary(...)" instructs R to provide information on the model that represents
the relationship between the two variables in the model (in this case, the model is called
"nlmexample.nls").

The term "plot(...)" asks R to plot the two quantitative variables "x" and "y" which can
be found in a dataframe (in this case called ExampleNLRDataframe.df).

	 "main = "Non-linear Model Plot"", "xlab = "X-Variable"",
	 "ylab = "Y-Variable"" give the main title and the x-axis and y-axis labels,
	 as seen previously.

The term "lines(...)" plots the relationship described by the non-linear model
"nlmexample.nls" on top of the datapoints, in red. This is different to abline used
above for linear regression, as abline only plots straight lines – the lines function
plots any relationship.

To plot the values with the non-linear model plotted to see how they match, you can
use the following code (this code is very similar to that seen in Section 2D Part II:

35

2D <- Regression Analysis

For the given example, the plot produced is:

A video to accompany the notes
given in this section, given below,

can be found here:

>Click Here<

The previous analytical techniques have been
concerned with analysing single variate data (i.e.
analysing one variable changing – Section 2A
and 2C) and relating two variables (i.e. regression
– Section 2D).

In many situations, you need to analyse multivariate data (i.e. where several variables
are measured for a single sample/observation) in such a way as to allow for all of these
variables to be analysed simultaneously. This can be done using unsupervised (this
section, Section 3A) and supervised (Section 3B) machine learning techniques.

Unsupervised machine learning (unsupervised pattern recognition) is multivariate
exploratory data analysis and is concerned with identifying patterns in the data.

An example of this type of data would be when you would have a scenario as follows:

Data was collected on the mineral composition (Cobalt, Mercury, Boron, Iron)
of 150 Manuka honey samples from different regions in New Zealand. The raw
data for this example has been put into a .csv file for importing. It was of interest

to ascertain if there were any groupings, patterns or trends in the data.

Section 3A:

Using R for
 Unsupervised Learning

https://youtu.be/YwOqfynCElU

37

3A <- Using R for Unsupervised Learning

Part I Data manipulation and large data set
management

In a chemistry-related, chemometric context:

•The objects might be samples, molecules,
materials, findings, etc.

•Typical features or variables of those
objects will be elemental patterns,
spectra, concentrations, structural
features, or physical properties.

Before you can carry out any multivariate
analysis, you first need to import the data into R.

In general, multivariate analytical data can be
arranged as a data matrix of n objects (rows) and p
features (columns).

The best, most recommended way to handle data sets
of this type is to first create an Excel file. This is also how you are likely to be given
data that you do not create/generate yourself. In your excel file, the data should be
formatted as stated above, with columns being features and each row being a separate
observation.

Once you have the data in this format (remember to save your file as a .csv file), you
can import it just like previously described earlier (Section I Part V).

It is very important to check the data you have imported, particularly with larger data
files where sometimes mistakes happen. The easiest way to check the imported
data is to click on the name of the imported data frame in the global environment
(the top right window of RStudio, orange box in screenshot). Selecting this will bring
up the dataframe as a tab in the top left RStudio window (green box in screenshot).

t i p s

One of the most common errors that occurs when importing larger
data sets is that sometimes extra cells are imported. These extra
cells are empty and will have "NA" when you inspect the dataframe.
The reason for this is that there is a space in the .csv file, so R thinks
it is a cell that should be imported.

The quickest way to fix this issue is to go to the .csv file and copy and
paste only the cells you want, into a new file, save this file as a .csv
and try to import it as you did earlier.

You can use this to check to make sure that everything looks in order before moving
on to the next steps. If something is not right, the easiest way to fix it is to go back to
the .csv file, change it accordingly and then re-import it.

->->

38

R Chemometrics Module

Part II Hierarchical cluster analysis (HCA)

To conduct hierarchical cluster analysis (HCA) on data, the first thing you need to do is
mean-centre and scale the data, then you calculate a similarity matrix. One of the most
common ways to calculate the similarity matrix is to calculate a Euclidean distance
matrix which measures the Euclidean distance between points, which can be used
as a measure of similarity. After this has been done, the next step is to carry out HCA
using this Euclidean distance matrix and plot the resulting dendrogram. The following
code is how to do this process:

To carry out HCA on data and plot the results, the code is:

ExampleMeanCentre.df <- scale(ExampleMultiV.df, center = TRUE,
	 scale = TRUE)

ExampleEuclid.mat <- dist(ExampleMeanCentre.df)

ExampleEuclid.HCA <- hclust(ExampleEuclid.mat)

plot(ExampleEuclid.HCA)

The term "scale(...)" asks R to mean-centre and scale the given dataframe (in this
case ExampleMultiV.df) and call this new, transformed dataframe a new name (in
this case ExampleMeanCentre.df).

The term "dist(...)" asks R to calculate the Euclidean distance matrix for the
dataframe, in this case "ExampleMeanCentre.df", and calls the resulting matrix
"ExampleEuclid.mat".

The term "hclust(...)" ask R to conduct HCA on the Euclidean matrix "ExampleEuclid.
mat" and calls the resulting model "ExampleEuclid.HCA"

The term "plot(...)" ask R to plot the resulting dendrogram from the HCA model
"ExampleEuclid.HCA".

The plot of the dendrogram will appear in the bottom right window, available for
interpretation and analysis.

The dendrogram for the honey samples is shown in the plot below:

->->

39

3A <- Using R for Unsupervised Learning

To carry out PCA on data and plot and provide the results, the code is:

Example.PCA <- prcomp(ExampleMultiV.df, center = TRUE,
	 scale = TRUE)

print(Example.PCA)

summary(Example.PCA)

screeplot(Example.PCA)

biplot(Example.PCA, scale = 0)

The term "prcomp(...)" asks R to first mean-centre and scale the data in the dataframe
"ExampleMultiV.df", then conduct PCA and call the resulting model "Example.PCA".

The terms "print(...)" and "summary(...)" provides details about the PCA model,
including the PC’s (eigenvectors) and variance explained (eigenvalues) for the PCA
model, in this case "Example.PCA".

The term "screeplot(...)" asks R to plot the screeplot for the PCA model
(in this case called "Example.PCA").

The term "biplot(...)" ask R to plot the biplot for the PCA model (in this case called
"Example.PCA").

Principal component analysis (PCA)Part III

To conduct a proncipal component analysis (PCA) in R is very straightforward and
the results and output of the PCA can be generated using a range of commands.
Conveniently, instead of needing to mean-centre and scale the data before analysis as
we did for HCA, the PCA function prcomp does this for you. The following code states
how to conduct PCA using R:

t i p s

One of the most common errors that might come up when you run
your PCA is that there are non-varying/constant columns that are
preventing analysis. The error will appear in the console when you try
to run the code. If this does occur, inspect the data set that you have
loaded in and check to see what the issue could be. This can often
be due to a importing error where some of the columns are just blank
"NA" cells, but otherwise it is likely you have a column that just has
constant values and does not change for any of the observations. If
this is the case, go back to the original .csv file, remove that column,
and reimport the data.

40

R Chemometrics Module

The plots from conducting PCA analysis on the honey samples can be found below:

The graphs produced using the above code are sufficient, but their look can be
improved by using an alternative graphing package – see Section 4 Part IV for more
information on how to do this.

41

A video to accompany the notes
given in this section, given below,

can be found here:

>Click Here<

Supervised machine learning (supervised
pattern recognition) is concerned with
identifying patterns when we know class
membership as well as classifying unknowns
into a class.

Section 3B:

Using R for
 Supervised Learning

https://youtu.be/uUWSpLKm-p0

->->

42

R Chemometrics Module

Part I Creating training and test sets

For data sets for supervised learning, you are often given two data sets – a training set
and a test set. Both of these sets have a column which states the response (i.e. in most
cases the class) that each of the samples has (belongs to for a classification situation).
This response is often the first column of the data set.

When you conduct supervised learning techniques such as random forest, kNN and
discriminant analysis, you need to have the response/class and explanatory variables,
separate. Therefore, the first thing you need to do when you load in your data is to split
the dataframe into the explanatory variables and the response variable (i.e. class). This
can be done by the following:

To split a dataset into the explanatory variable and the response, the code is:

ExampleDataExplanatory.df <- ExampleMultiV.df[,-c(1)]

ExampleDataResponse <- as.factor(ExampleMultiV.df[,1])

The term "...[,-c(1)]" asks R to make a new data frame (in this case
ExampleDataExplanatory.df) that is the same as the original data frame (in this
case "ExampleMultiV.df"), without the first column. This new dataframe contains only
the explanatory variables.

The term "as.factor(...[,1])" asks R to make a new data structure (in this case
ExampleDataResponse) that is just the first column of the original data frame (in this
case "ExampleMultiV.df"). This new data structure is actually a vector and is your
response/class that should be defined as a factor.

You will need to do this for both the training data set and the test dataset.

t i p s

Do not call your training and test data sets the same name when you
import them into R!!! Be descriptive with your data set names – this
will help you in the long run.

Part II Random forest models

When fitting a random forest model, you need to make sure that you have first installed
the randomForest package. Once this has been installed, you then need to load it.
Once you have done this, it is very straightforward to fit the random forest model to
your training data, as well as generate the output and plot the most important variables.
All of this can be done, as follows:

->->

->->

43

3B <- Using R for Supervised Learning

To fit a random forest model to a training set of data, the code is:

To test a random forest model on a test set of data, the code is:

install.packages("randomForest")

require("randomForest")

ExampleModel.rf <- randomForest(x = TrainingDataExplanatory.df,
	 y = TrainingDataResponse)

print(ExampleModel.rf)

varImpPlot(ExampleModel.rf)

TestDataRfPredictions <- predict(ExampleModel.rf, newdata =
	 TestDataExplanatory.df, type = "class")

print(table(TestDataResponse, TestDataRfPredictions))

The line "install.packages("randomForest")" installs the "randomForest"
package in R – this only needs to be done once on a device.

The line "require("randomForest")" loads the "randomForest" package in R –
this needs to be done every time you open R and use the package.

The term "randomForest(...)" instructs R to create a random forest model using
your training data, calling the random forest model the name you assign it (in this case
ExampleModel.rf).

	 "x=..." specifies the name of the dataframe of the training set explanatory
	 variables (in this case called TrainingDataExplanatory.df).

	 "y=..." specifies the name of the dataframe/vector of the training set response/
	 classes (in this case called TrainingDataResponse).

The term "print(...)" asks R to print the output and information about the random
forest model (in this case called ExampleModel.rf).

The term "varImpPlot(...)" asks R to plot a graph to show the most important variables
in the random forest model (in this case called ExampleModel.rf).

The term "predict(...)" instructs R to predict the class of the test data based on the
random forest model (in this case ExampleModel.rf), using the explanatory variables
for the test data (in this case TestDataExplanatory.df). R calls the predictions for
the test set the name you assign it (in this case TestDataRfPredictions).

The term "print(table(...))" instructs R to print the confusion matrix for the
test set of data (i.e. a table of the results comparing the actual class (in this case
TestDataResponse) and the predicted class using the random forest model (in this
case TestDataRfPredictions).

After the random forest model has been fit to your training data, you can then assess
how good the model is by testing it with your test data explanatory variables and
comparing the predicted class with the actual class. This can be done by the following:

->->

44

R Chemometrics Module

kNN (k Nearest Neighbours) analysisPart III

When using k Nearest Neighbours (kNN) analysis to predict the class of the training
data, you need to make sure that you have first installed the class package. Once this
has been installed, you then need to load it. After this, it is very straightforward to use
kNN with your training data, to predict the class of a test set and then assess the
results. All of this can be done, as follows:

To analyse your test data using kNN training data, the code is:

install.packages("class")

require("class")

TestDataKnnPredictions <- knn(train = TrainingDataExplanatory.df,
	 test = TestDataExplanatory.df, cl = TrainingDataResponse, k = 6)

print(table(TestDataResponse, TestDataKnnPredictions))

The line "install.packages("class")" installs the "class" package in R – this only
needs to be done once on a device.

The line "require("class")" loads the "class" package in R – this needs to be done
every time you open R and use the package

The term "knn(...)" instructs R to conduct a kNN analysis using your training data. R
conducts this analysis to predict the class of the test set of data (this is the results of the
command, in this case TestDataKnnPredictions).

	 "train = ..." specifies the dataframe of the training set explanatory variables (in
	 this case called TrainingDataExplanatory.df).

	 "test = ..." specifies the explanatory variable data frame for the test set
	 (in this case TestDataExplanatory.df).

	 "cl = ..." specifies the dataframe/vector of the training set response/classes (in
	 this case called TrainingDataResponse).

	 "k = ..." specifies the number of nearest neighbours used in the class
	 assignment by the model (in this case, 6).

The term "print(table(...))" instructs R to print the confusion matrix for the
test set of data (i.e. a table of the results comparing the actual class (in this case
TestDataResponse) and the predicted class using the kNN analysis (in this case
TestDataKnnPredictions).

->->

45

3B <- Using R for Supervised Learning

To mean-centre and scale the training and test data, the code is:

The term "rbind(...,...)" combines the two data frames with explanatory variables, row-
wise (in this case TrainingDataExplanatory.df and TestDataExplanatory.
df)

The term "scale(...)" asks R to mean-centre and scale the given dataframe (in this case
AllDataExplanatory.df) and call this new, transformed dataframe a new name (in
this case AllDataExplanatoryMS.df).

The lines "...dataframe[c(1:120),]" asks R to split the mean-centered and scaled
data frame back into its training and test sets.

Discriminant analysis Part IV

Discriminant analysis (DA) is another method of supervised learning that can be used
to predict the probability of a sample belonging to a class/category based on its
explanatory variables.

Commonly, linear discriminant analysis (LDA) is used but this technique requires
certain assumptions to be met. A more flexible (but more complex) variant is quadratic
discriminant analysis (QDA).

Before you conduct DA, you need to mean-centre and scale both the training and
test explanatory variables. This can be done in the same was as you saw for HCA,
but make sure to mean-centre and scale the training and test explanatory variable
dataframes together. You can combine the explanatory training and test variables, do
the mean centering, and separate the training and test dataframes, as shown below:

"[c(1:120),]" specifies the rows of the combined data frame that correspond to
the training data set. In this case, it is rows 1 to 120 – the number 120 will change
depending on the number of observations/samples are in the training set (for the
example data, there were 120 observations/samples in the training set).

"[-c(1:120),]" specifies the rows of the combined data frame that correspond to
the test data set. In this case, it is all rows except 1 to 120 – the number 120 will
change depending on the number of observations/samples are in the training set
(for the example data, there were 120 observations/samples in the training set).

When using a DA model to predict the class of the training data, you need to make
sure that you have first installed the mass package. Once this has been installed, you
then need to load it. Once you have done this, it is very straightforward to build an
LDA/QDA model with your training data, to predict the class of a test set and then
assess the results.

AllDataExplanatory.df <- rbind(TrainingDataExplanatory.df,
	 TestDataExplanatory.df)

AllDataExplanatoryMS.df <- scale(AllDataExplanatory.df, center =
	 TRUE, scale = TRUE)

TrainingDataExplanatory.df <- AllDataExplanatoryMS.df[c(1:120),]

TestDataExplanatory.df <- AllDataExplanatoryMS.df[-c(1:120),]

->->

->->

46

R Chemometrics Module

First looking at creating an LDA model:

To carry out LDA on data and plot the results, the code is:

To test an LDA model on a test set of data, the code is:

install.packages("MASS")

require("MASS")

ExampleModel.lda <- lda(x = TrainingDataExplanatoryMS.df,
	 grouping = TrainingDataResponse)

print(ExampleModel.lda)

plot(ExampleModel.lda)

TestDataLdaPredictions <- predict(ExampleModel.lda, newdata =
	 TestDataExplanatoryMS.df)

print(table(TestDataResponse, TestDataLdaPredictions
 	 [["class"]]))

The line "install.packages("MASS")" installs the "MASS" package in R – this only
needs to be done once on a device.

The line "require("MASS")" loads the "MASS" package in R – this needs to be done
every time you open R and use the package

The term "lda(...)" instructs R to create a linear discriminant model on your training
data (in this case calling the model ExampleModel.lda).

	 "x = ..." specifies the dataframe of the training set explanatory
	 variables (in this case called TrainingDataExplanatoryMS.df).

	 "grouping = ..." specifies the dataframe/vector of the training
	 set response/classes (in this case called TrainingDataResponse).

The term "print(...)" asks R to print the output and information about the LDA model
(in this case called ExampleModel.lda).

The term "plot(...)" asks R to plot a graph plot the results of the generated LDA model
(in this case called ExampleModel.lda).

The term "predict(...)" instructs R to predict the class of the test data based on the
LDA model (in this case ExampleModel.lda), using the explanatory variables for the
test data (in this case TestDataExplanatoryMS.df). R calls the predictions for the
test set the name you assign it (in this case TestDataLdaPredictions).

The term "print(table(...))" instructs R to print the confusion matrix for the
test set of data (i.e. a table of the results comparing the actual class (in this case
TestDataResponse) and the predicted class using the LDA model (in this case
TestDataLdaPredictions).

Like for the random forest model, once you create the LDA model, the next thing to
do is to test its performance using the test data set. This can be done by doing the
following:

->->

47

3B <- Using R for Supervised Learning

To carry out QDA on data and plot the results, the code is:

require("MASS")

ExampleModel.qda <- qda(x = TrainingDataExplanatoryMS.df,
	 grouping = TrainingDataResponse)

print(ExampleModel.qda)

TestDataQdaPredictions <- predict(ExampleModel.qda, newdata =
	 TestDataExplanatoryMS.df)

print(table(TestDataResponse, TestDataQdaPredictions
	 [["class"]]))

The line "require("MASS")" loads the "MASS" package in R – this needs to be done
every time you open R and use the package.

The term "qda(...)" instructs R to create a quadratic discriminant model on your training
data and calls the QDA model the name you assign it (in this case ExampleModel.
qda).

	 "x = ..." specifies the dataframe of the training set explanatory
	 variables (in this case called TrainingDataExplanatoryMS.df).

	 "grouping = ..." specifies the vector of the training set response/classes (in
	 this case called TrainingDataResponse).

The term "print(...)" asks R to print the output and information about the QDA model
(in this case called ExampleModel.qda).

The term "predict(...)" instructs R to predict the class of the test data based on the
QDA model (in this case ExampleModel.qda), using the explanatory variables for the
test data (in this case TestDataExplanatoryMS.df). R calls the predictions for the
test set the name you assign it (in this case TestDataQdaPredictions).

The term "print(table(...))" instructs R to print the confusion matrix for the
test set of data (i.e. a table of the results comparing the actual class (in this case
TestDataResponse) and the predicted class using the QDA model (in this case
TestDataQdaPredictions).

The same process as described above can be carried out to perform quadratic
discriminant analysis (QDA), with the only difference being the type of model you fit –
instead of "lda", writing "qda", i.e.:

48

A video to accompany the notes
given in this section, given below,
can be found here:

>Click Here<

An alternative to graphing data using the basic
“stats” package is to use alternative packages
including "ggplot2". This package is extremely
popular due to the aesthetics of the graphs that it
produces. Like other packages, ggplot2 must be
installed prior to use and then loaded each time
you open your session.

Part I ggplot2 package – one dimensional plots
revisited

First, we will look at how to produce variants of the one dimensional plots introduced
in Section 2B, Part I. ggplot2 works with dataframes, so even when you have one-
dimensional data (i.e. a vector), you need to convert it to a dataframe (of only one
variable) for ggplot2 to work with. Once you do this and load that ggplot2 package, the
plot can be easily produced. This is exemplified with stripcharts/dotplots as follows on
the next page.

Section 4:

Advanced Graphing/
Visual Representation

https://youtu.be/xZwAsFDGZzA

->->

49

4 <- Advanced Graphing/Visual Representation

To plot a stripchart with ggplot2, the code is:

ExampleData.df <- data.frame(ExampleData)

require("ggplot2")

ggplot(ExampleData.df, aes(x = ExampleData, y = "")) +
	 geom_jitter(shape = 19, width = 0, height = 0.05) +
	 labs(title = "ExampleData", x = "x-axis label", y = "y-axis
	 label")

The term "data.frame(...)" instructs R to create a data frame (in this case called
ExampleData.df) from the supplied vector (in this case the vector is called
ExampleData).

The term "require("ggplot2")" loads the "ggplot2" package in R – this needs to be
done every time you open R and use the package.

The term "ggplot(...)" instructs R and ggplot2 to create a one-dimensional dotplot of
data from the supplied dataframe (in this case the dataframe called ExampleData.df).

	 "aes(...)" says what columns in the dataframe should be plotted.	

		 "x = ..." says the x-axis corresponds to the values of the data in the
		 dataframe – this is the name of the column in the dataframe (in this case,
		 ExampleData).

		 "y = ..." says the y axis is blank which is noted by "".

	 "geom _ jitter(...)" describes the points that are plotted.

		 "shape = 19" states the type of symbol/dot that should be used in the
		 plot – these are the same symbols as shown earlier in Section 2A.

		 The height and width values should not be changed from those stated
		 in this example – these values says that points that are the same value
		 should not overlap, but instead should be separate and gives parameters
		 for this.

	 "labs(...)" states what the main and axis titles/labels should be.

		 "title = "ExampleData"" says what the main title of the graph
 		 should be (in this case I have titled it simply ExampleData).

		 "x = "x-axis label"" says what the x-axis label of the graph
		 should be (in this case I have titled it simply x-axis label).

		 "y = "y-axis label"" says what the y-axis label of the graph
		 should be (in this case I have titled it simply y-axis label).

The graph you will get
will look like this:

->->

50

R Chemometrics Module

Dot plots/stripcharts are good for smaller data sets, but larger sample sizes are best
represented using either boxplots or barplots (or density plots in some cases) – see
the code and example output for producing these plots, below.

To plot a boxplot with ggplot2, the code is:

ExampleData.df <- data.frame(ExampleData)

require("ggplot2")

ggplot(ExampleData.df, aes(y = ExampleData)) + geom_boxplot
	 (fill = "goldenrod") + labs(title = "ExampleData", x =
	 "x-axis label", y = "y-axis label")

The term "data.frame(...)" instructs R to create a data frame (in this case called
ExampleData.df) from the supplied vector (in this case the vector is called
ExampleData).

The term "require("ggplot2")" loads the "ggplot2" package in R – this needs to
be done every time you open R and use the package

The term "ggplot(...)" instructs R and ggplot2 to create a boxplot of data from the
supplied data frame (in this case the dataframe is called ExampleData.df).

	 "aes(...)" specifies what column in the dataframe should be plotted.	

		 "y = ..." specifies the y-axis corresponds to the values of the data in the
		 dataframe – this is the name of the column in the dataframe (in this case,
		 ExampleData)

	 "geom _ boxplot(...)" describes the box that is to be plotted.

		 "fill = "goldenrod"" specifies the colour that the box should be filled
		 with – options for colours are the same as those described earlier in
		 Section 2A.

	 "labs(...)" is as described on page 49.

The code above gives a boxplot that
looks like this, using the example data:

->->

51

4 <- Advanced Graphing/Visual Representation

To plot a barplot with ggplot2, the code is:

ExampleData.df <- data.frame(ExampleData)

require("ggplot2")

ggplot(ExampleData.df, aes(x = ExampleData)) + geom_bar(fill 	
	 = "darkcyan") + labs(title = "ExampleData", x = "x-axis
	 label", y = "y-axis label")

The term "data.frame(...)" instructs R to create a data frame (in this case called
ExampleData.df) from the supplied vector (in this case the vector is called
ExampleData).

The term "require("ggplot2")" loads the "ggplot2" package in R – this needs to
be done every time you open R and use the package

The term "ggplot(...)" instructs R and ggplot2 to create a barplot of data from the
supplied data frame (in this case the dataframe is called ExampleData.df).

	 "aes(...)" specifies what columns in the dataframe should be plotted.	

		 "x = ..." specifies the x-axis corresponds to the values of the data in the
		 dataframe – this is the name of the column in the dataframe (in this case,
		 ExampleData).

	 "geom _ bar(...)" describes the look of the bars that should be
	 plotted.

		 "fill = "darkcyan"" specifies the colour that the box should be filled
		 with – options for these are the same as those described earlier in
		 Section 2A.

	 "labs(...)" is as described on page 49.

The code above gives a barplot (using the example data) that looks like this:

->->

52

R Chemometrics Module

Density plots can also be produced using ggplot2 by implementing the following code:

To plot a density plot with ggplot2, the code is:

ExampleData.df <- data.frame(ExampleData)

require("ggplot2")

ggplot(ExampleData.df, aes(x = ExampleData)) +
	 geom_density(colour = "mediumorchid1", size = 1.2) +
	 labs(title = "ExampleData", x = "x-axis label", y = "y-axis
	 label")

The term "data.frame(...)" instructs R to create a data frame (in this case called
ExampleData.df) from the supplied vector (in this case the vector is called
ExampleData).

The term "require("ggplot2")" loads the "ggplot2" package in R – this needs to be
done every time you open R and use the package.

The term "ggplot(...)" instructs R and ggplot2 to create a density plot of data from the
supplied data frame (in this case the dataframe is called ExampleData.df).

	 "aes(...)" specifies what columns in the dataframe should be plotted.	

		 "x = ..." specifies the x-axis corresponds to the values of the data in the
		 dataframe – this is the name of the column in the dataframe (in this case,
		 ExampleData).

	 "geom _ density(...)" describes the look of the density plot and
	 line that should be plotted.

		 "colour = "mediumorchid1"" specifies the colour that the
		 line should – options for these are the same as those described earlier 		
	 in Section 2A.

		 "size = 1.2" specifies the width of the line on the graph.

	 "labs(...)" is as described on page 49.

This produces the
following density plot,
using the example data:

53

4 <- Advanced Graphing/Visual Representation

Part II ggplot2 package – side-by-side plots
revisited

The ggplot2 package can also be used to produce side-by-side plots like those that
were produced in Section 2A Part II. As mentioned above, the ggplot2 package best
likes data in dataframes. Moreover, there is a specific way to format the dataframes
that makes it best to plot – that is with all the values in one column and their grouping
factor is in the other. This is the way that the example data frame for the data below
was set up in Section 1 Part V.

sugar content
(measurement)

supplier
(i.e. conditition)

85.4 A
86.9 A
89.1 A
88.4 A
87.3 A
88.7 A
90.3 B
85.4 B
88.2 B
81.0 B
79.3 B
87.7 B
83.1 C
82.4 C
81.0 C
78.7 C
79.5 C
82.0 C

Side-by-side dot plots can be produced in a very similar way to single dot plots, but
by also specifying the grouping factor for which you want separate dot plots to be
produced by.

The names of the vectors used in the example code below are purposefully non-
specific to make it easier for you to apply the code to your own question/situation. In
theory, I should have named the “measurement” vector as “sugarContent” and
the “condition” vector as “supplier” to best represent the data.

->->

54

R Chemometrics Module

To plot a side-by-side dotplots with ggplot2, the code is:

require("ggplot2")

ggplot(ExampleData.df, aes(x = conditions, y = measurements,
	 fill = conditions)) + geom_dotplot(binaxis = ’y’,
	 stackdir = ’center’) + labs(title = "ExampleData", x =
	 "x-axis label", y = "y-axis label")

The line "require("ggplot2")" loads the "ggplot2" package in R – this needs to be
done every time you open R and use the package.

The term "ggplot(...)" instructs R and ggplot2 to create a side-by-side dotplot of data
from the supplied data frame (in this case the dataframe called ExampleData.df).

	 "aes(...)" says what values in the dataframe should be on the x
	 and y axis and how the dots should be coloured.

		 "x = ..." specifies the x-axis corresponds to the grouping variable - this
 		 is the name of the column in the dataframe (in this case, conditions).

		 "y = ..." specifies the y-axis corresponds to the measurement values - this
		 is the name of the column in the dataframe (in this case, measurements).

		 "fill = ..." specifies the dots to be coloured according to the group (in
		 this case, conditions). This term is optional and can be removed if you
		 want all dots to be the same colour.

	 "geom _ dotplot(...)" describes the way the points should be
	 plotted. 	

		 "binaxis = ..." and "stackdir = ..." should not be changed
		 from those stated in this example.	

	 "labs(...)" is as described on page 49.

The graph produced using the above code and example data is given below. Here you
can see that separate, side-by-side dot-plots have been plotted for each level of the
grouping factor (in this case, "conditions". The dots have also been filled according
to their group as an additional feature.

->->

55

4 <- Advanced Graphing/Visual Representation

Side-by-side boxplots can also be produced in a very similar way, by using the following
code:

To plot side-by-side boxplots with ggplot2, the code is:

require("ggplot2")

ggplot(ExampleData.df, aes(x = conditions, y = measurements,
	 fill = conditions)) + geom_boxplot() + labs(title =
	 "ExampleData", x = "x-axis label", y = "y-axis label")

The term "require("ggplot2")" loads the "ggplot2" package in R – this needs to
be done every time you open R and use the package.

The term "ggplot(...)" instructs R and ggplot2 to create a side-by-side boxplot of the
supplied data frame (in this case the dataframe is ExampleData.df).

	 "aes(...)" says what values in the dataframe should be on the x
	 and y axis and how the boxes should be coloured.

		 "x = ..." specifies the x-axis corresponds to the grouping variable - this is
		 the name of the column in the dataframe (in this case, conditions).

		 "y = ..." specifies the y-axis corresponds to the measurement values - this
		 is the name of the column in the dataframe (in this case, measurements).

		 "fill = ..." specifies the boxes to be coloured according to the group (in
		 this case, conditions). This term is optional and can be removed if you
		 want all boxes to be the same colour.

	 "geom _ boxplot()" describes that a boxplot should be plotted.

	 "labs(...)" is as described on page 49.		

The graph produced using the above code and example data is given below. Here
you can see that separate, side-by-side boxplots have been plotted for each level
of the grouping factor (in this case, "conditions"). The boxes have also been filled
according to their group as an additional feature.

->->

56

R Chemometrics Module

ggplot2 package – Regression revisitedPart III

ggplot2 can also be used to plot linear models and calibration curves to show the
relationship between two quantitative variables (one independent/explanatory and the
other dependent). This can be done by using the following code:

To graph a linear model and calibration curve with ggplot2, the code is:

require("ggplot2")

ggplot(ExampleData.df, aes(x = xvariable, y = yvariable)) +
	 geom_point (shape = 19) + labs(title = "Calibration plot", 	
	 x = "Explanatory variable", y = "Dependent variable") +		
	 geom_abline(intercept = 41.4, slope = 399.3, color="red")

The term "require("ggplot2")" loads the "ggplot2" package in R – this needs to
be done every time you open R and use the package.

The term "ggplot(...)" instructs R and ggplot2 to create a scatter plot of the data from
the supplied dataframe (in this case the dataframe is called ExampleData.df).

	 "aes(...)" specifies what values in the dataframe should be plotted.	

		 "x = ..." specifies the x-axis corresponds to the explanatory/
		 independent variable - this is the name of the column in the dataframe
		 (in this case, xvariable).

		 "y = ..." says the y-axis corresponds to the dependent variable - this
		 is the name of the column in the dataframe (in this case, yvariable).

	 "geom _ point(...)" describes the points that should be plotted.

		 "shape = 19" specifies the type of symbol/dot that should be used in the
		 plot – these are the same symbols as shown earlier in Section 2A.

	 "labs(...)" specifies what the main and axis titles/labels should be

		 "title = "Calibration plot"" says what the main title of the
		 graph should be (in this case I have titled it Calibration plot).

		 "x = "Explanatory variable"" says what the x-axis label of the
		 graph should be (in this case I have titled it Explanatory variable).

		 "y = "Dependent variable"" says what the x-axis label of the
		 graph should be (in this case I have titled it Dependent variable).

	 "geom _ abline(...)" describes the line of the linear model that
	 should be plotted.

		 "intercept = 41.4" states what the y-intercept of the line should
		 be. This value can be obtained from the linear model summary when
		 the model is fit to the data - see Section 2D Part I and Part II.

		 "slope = 399.3" states what the slope of the line should be. This
		 value can be obtained from the linear model summary when the model
		 is fit to the data - see Section 2D Part I and Part II.

		 "color="red"" states what colour the line should be, in this case red.
		 The options are the same as those described earlier in Section 2A.

->->

4 <- Advanced Graphing/Visual Representation

This will produce a plot that looks
like the following:

Factoextra package – PCA plots revisitedPart IV

In Section 3A Part III, PCA was covered with the plots produced using the basic stats
package. An alternative package to graph PCA output is the factoextra package (which
actually uses ggplot2, behind the scenes). Once you have run the PCA using the code
shown earlier, you can produce the various plots with factoextra, using the following
code:

To plot the results of PCA using factoextra, the code is:

require("factoextra")

fviz_screeplot(Example.pca, ncp = 10)
	 fviz_pca_var(Example.pca)
	 fviz_pca_biplot(Example.pca)
	 fviz_pca_ind(Example.pca, geom = c("point", "text"),
	 pointsize = 3)

The term "require("factoextra")" loads the "factoextra" package in R – this
needs to be done every time you open R and use the package.

The term "fviz _ screeplot(...)" instructs R and factoextra to produce a screeplot
for the PCA model "Example.pca".

	 "ncp = 10" indicates the maximum number of principal components that
	 should be included in the screeplot, in this case 10.

The term "fviz _ pca _ var(...)" instructs R and factoextra to produce a loadings
plot for the PCA model, in this case called Example.pca.

The term "fviz _ pca _ biplot(...)" instructs R and factoextra to produce a biplot
for the PCA model, in this case called Example.pca.

The term "fviz _ pca _ ind(...)" instructs R and factoextra to produce a scores plot
for the PCA model, in this case called Example.pca.

	 "geom = c(...)" specifies that there should be labelled points for each
	 sample in the scores plot.

	 The size of the point can be varied by changing the number for "pointsize
	 = 3". 	 57

58

R Chemometrics Module

Plots for the honey example introduced in Section 3A are given below:

Part I Statistics workflows

Now that we have gone through the different
types of analyses that are possible with R, the
next step is applying these methods to your
data. Different data and situations do, however,
require different type of analyses, so you need
to decide on the correct workflow.

The first thing you need to do is to take note
of what type of data you have and the second
is to know what you are trying to deduce
from your data. With this information, you can
have a clear path as to what you need to do –
flowcharts showing you how to do this are on
the following pages.

Section 5A:

Bringing it all
Together

There are two workflows, one is for if you
have one or two sets of data and the other
is if you have more than two sets of data/
measurements.

Each of the workflows communicates what sort
of graph of the raw data you should produce
if you should formally check for outliers, what
statistics you should calculate and what sort of
subsequent analysis you should be performing.
It also refers back to the section of R module
that you should consult for each task.

60

R Chemometrics Module

What data do you have?

Graph the data using a one-
dimensional plot (Section 2B

Part I or Section 4 Part I)

Check if there are any outliers
present and treat accordingly

(Section 2A Part I)

Calculate descriptive statistics
(Section 2A Part II)

Graph the data using a side-
by-side plot (Section 2B Part I

or Section 4 Part II)

For each set of data:

Check if there are any outliers
present and treat accordingly

(Section 2A Part I)

Calculate descriptive statistics
(Section 2A Part II)

Fit an unweighted linear

model (Section 2D Part I)

Graph the data with
unweighted linear model, and
the residuals (Section 2D Part

IV or Section 4 Part III)

Fit an weighted linear model

(Section 2D Part II)

Graph the data with weighted
linear model (Section 2D Part

IV or Section 4 Part III)

Fit a non-linear model

(Section 2D Part IV)

Graph the data with non-
linear model (Section 2D Part

IV)

One sample t-test
(Section 2C Part I)

Two-sample t-test where the
variances are significantly

different
(Section 2C Part I)

Two-sample t-test where the
variances are not significantly

different
(Section 2C Part I)

F-test

(Section C Part II)

Paired data t-test
(Section 2C Part I)

Are the variances of the two
groups significantly different?

Is the data paired data?

What are you trying to find
out?

Yes

No

No Yes

I want to compare the mean
of the data against a specific
value

Residuals show non-constant
variance

two sets of
quantitative data

One set of
quantitative data

If there is a significant difference
between the two groups.

A linear relationship
between the variables

A non-linear relationship
between the variables

I want to compare these two
data sets against each other
to see if there is a significant
difference between the groups

61

5A <- Bringing it all Together

ANOVA

(Section 2C Part III)

Do you know groups/
classes for the data?

Graph the data using a side-
by-side plot (Section 2B Part I

or Section 4 Part II)

For each set of data:

Check if there are any outliers
present and treat accordingly

(Section 2A Part I)

Calculate descriptive statistics
(Section 2A Part II)

Unsupervised learning; do
one or both of the following:

Conduct HCA on the data set
(Section 3A, Part II)

Conduct PCA on the data
set (Section 3A, Part III
(and Section 4 Part IV for

alternative graphing))

Supervised learning; if not
already pre-done, split the
data into training and test
sets (Section 3B Part I), then
do one, some or all of the

following:

Fit a random forest model to
the training set and test using
the test set (Section 3B, Part

II)

Use kNN with the training set
and predict the class of the
test set (Section 3B, Part II)

Fit a DA model to the training
set and test using the test set

(Section 3B, Part IV)

No Yes

> two sets of
quantitative data

I want to compare the data/
measurements against each

other to see if there is a
significant difference between

the data for the groups

I want to simultaneously
analyse a number of data/

measurements

What are you trying to find
out/do?

->->

62

R Chemometrics Module

Part II Worked examples

The workflow charts in Section 5A Part I help to guide you as to what types of analysis
you should do in a given situation. Below are four different workflow examples of how
to follow this chart and complete the required analysis in R. The code and output
formatting below has been generated using the "Knit Document" process mentioned
in Section 1 Part VI.

Example 1: Cobalt in soil

The cobalt levels in soils around the Waikato region were measured, giving the
results shown in the table below:

Levels of cobalt in
the soil (mg/kg)

0.15, 0.20, 0.31, 0.28, 0.26, 0.17, 0.45,
0.33, 0.25, 0.27, 0.22, 0.20, 0.17, 0.19,

0.30, 0.28, 0.24, 0.26

For the health of the sheep, sheep farming should only be where cobalt levels in
soil are 0.3 mg/kg so the sheep do not get ill from cobalt deficiency. Determine

if the soil in the Waikato region is appropriate for sheep farming.

##Loading in the data.

#First loading in the cobalt data

soilCobalt <- c(0.15, 0.20, 0.31, 0.28, 0.26, 0.17, 0.45,
0.33, 0.25, 0.27, 0.22, 0.20, 0.17, 0.19, 0.30, 0.28, 0.24,
0.26)

##Graphing the data (this example using ggplot2)

#Creating a data frame of the vector as this is what ggplot2
prefers

soilCobalt.df <- data.frame(soilCobalt)

#One-dimension box plot

require("ggplot2")

Loading required package: ggplot2

Warning: package ‘ggplot2’ was built under R version 3.6.3

ggplot(soilCobalt.df, aes(y = soilCobalt)) + geom_boxplot(-
fill = "steelblue") + labs(title = "Cobalt levels in Waikato
soil",x = "Waikato soil", y = "Cobalt (mg/kg)")

63

5A <- Bringing it all Together

##Need to check for outliers and then calculate descriptive
statistics.

#Checking data for outliers

require("outliers")

Loading required package: outliers

grubbs.test(soilCobalt)

##

Grubbs test for one outlier

##

data: soilCobalt

G = 2.76845, U = 0.52264, p-value = 0.01349

alternative hypothesis: highest value 0.45 is an outlier

#Results of the outlier test indicate that 0.45 is an outli-
er. Need to remove this from the data set:

soilCobalt <- c(0.15, 0.20, 0.31, 0.28, 0.26, 0.17,0.33,
0.25, 0.27, 0.22, 0.20, 0.17, 0.19, 0.30, 0.28, 0.24, 0.26)

#Next calculating descriptive statistics for the data

mean(soilCobalt)

[1] 0.24

sd(soilCobalt)

[1] 0.05338539

->->

64

R Chemometrics Module

var(soilCobalt)

[1] 0.00285

##We want to test the data against the value of 0.3 mg/kg to
see if there is a significant difference. Need to conduct a
one-sample t-test

t.test(soilCobalt, mu = 0.3, conf.level = 0.95)

One Sample t-test

data: soilCobalt

t = -4.634, df = 16, p-value = 0.0002758

alternative hypothesis: true mean is not equal to 0.3

95 percent confidence interval:

0.2125518 0.2674482

sample estimates:

mean of x

0.24

##Loading in the data.

#First loading in all Uric acid measurements as one vector and
diet as the other, then creating a dataframe

UricAcid <- c(54, 63, 58, 59, 61, 55, 61, 51, 68, 64, 48, 52,
38, 36, 44, 54, 58, 49, 47, 50)

diet <- c("vegetarian","vegetarian","vegetarian","vegetarian",
"vegetarian","vegetarian","vegetarian","vegetarian",
"vegetarian","vegetarian","vegan","vegan","vegan","vegan",
"vegan","vegan","vegan","vegan","vegan","vegan")

UricAcidData.df <- data.frame(UricAcid, diet)

Example 2: Uric acid in the blood

The levels of uric acid in human blood were measured in samples from
vegetarian and vegan patients (10 people in each group), giving the results

shown in the table below:

Vegetarian Vegan
Levels of uric acid in

the blood (ppm)
54, 63, 58, 59, 61, 55,

61, 51, 68, 64
48, 52, 38, 36, 44, 54,

58, 49, 47, 50

Determine if there is a significant difference in levels of uric acid in vegetarian
and vegan patients.

65

5A <- Bringing it all Together

##Graphing the data (this example using ggplot2)

#Side by side dot plots of the two groups

require("ggplot2")

Loading required package: ggplot2

Warning: package ‘ggplot2’ was built under R version 3.6.3

ggplot(UricAcidData.df, aes(x = diet, y = UricAcid, fill =
diet)) + geom_dotplot(binaxis = ’y’, stackdir = ’center’) +
labs(title = "Uric acid levels in the blood of patients",
x = "Diet", y = "Uric acid (ppm)")

`stat_bindot()` using `bins = 30`. Pick better value with
`binwidth`.

##For each set of data, need to check for outliers and cal-
culate descriptive statistics.

#First, loading in vegetarian and vegan data as separate
vectors

vegetarianUricAcid <- c(54, 63, 58, 59, 61, 55, 61, 51, 68,
64)

veganUricAcid <- c(48, 52, 38, 36, 44, 54, 58, 49, 47, 50)

#Checking both for outliers

require("outliers")

Loading required package: outliers

grubbs.test(vegetarianUricAcid)

Grubbs test for one outlier

66

R Chemometrics Module

data: vegetarianUricAcid

G = 1.68516, U = 0.64941, p-value = 0.3566

alternative hypothesis: highest value 68 is an outlier

grubbs.test(veganUricAcid)

Grubbs test for one outlier

data: veganUricAcid

G = 1.70539, U = 0.64094, p-value = 0.3357

alternative hypothesis: lowest value 36 is an outlier

#Both data sets have no evidence of outliers. Next calculat-
ing descriptive statistics for each

mean(vegetarianUricAcid)

[1] 59.4

sd(vegetarianUricAcid)

[1] 5.103376

var(vegetarianUricAcid)

[1] 26.04444

mean(veganUricAcid)

[1] 47.6

sd(veganUricAcid)

[1] 6.801961

var(veganUricAcid)

[1] 46.26667

##We want to compare the two data sets to see if there is a
significant difference.

#Need to conduct an F-test for variances first

var.test(vegetarianUricAcid, veganUricAcid, conf.level =
0.95)

F test to compare two variances

data: vegetarianUricAcid and veganUricAcid

F = 0.56292, num df = 9, denom df = 9, p-value = 0.4049

alternative hypothesis: true ratio of variances is not
equal to 1

67

5A <- Bringing it all Together

95 percent confidence interval:

0.1398214 2.2663137

sample estimates:

ratio of variances

0.5629203

#No evidence of a difference in variances for the two groups.
Need to calculate a two-sample t-test for when variances are
not significantly different:

t.test(vegetarianUricAcid, veganUricAcid, var.equal = TRUE,
conf.level = 0.95)

Two Sample t-test

data: vegetarianUricAcid and veganUricAcid

t = 4.3881, df = 18, p-value = 0.0003547

alternative hypothesis: true difference in means is not
equal to 0

95 percent confidence interval:

6.150468 17.449532

sample estimates:

mean of x mean of y

59.4 47.6

Example 3: Methyl violet

Methyl violet is an organic contaminant from industrial processes. The results
from analysis to measure methyl violet using spectrophotometry are given
in the table below where the absorbance at 583 nm of solutions containing

various concentrations (in mgmL-1) of methyl violet were measured.

Determine if there is a linear relationship between these variables and if so
develop and assess the linear regression model.

Methyl violet
concentration

Absorbance

10 mg/L standard 1.0
20 mg/L standard 2.1
30 mg/L standard 2.9
40 mg/L standard 4.2
50 mg/L standard 5.1
60 mg/L standard 5.8
70 mg/L standard 7.2

->->

68

R Chemometrics Module

##Loading in the data.

#First loading in methyl violet concentration as one vector and
abosrbance as the other, then creating a dataframe

methylVioletConcentration <- c(10, 20, 30, 40, 50, 60, 70)

absorbance <- c(1.2, 2.1, 2.9, 4.2, 5.1, 5.8, 7.0)

methylViolet.df <- data.frame(methylVioletConcentration,
absorbance)

##Fitting an unweighted linear model

methylVioletCalibration.lm <- lm(absorbance~methylVioletConcen-
tration, data = methylViolet.df)

summary(methylVioletCalibration.lm)

Call:

lm(formula = absorbance ~ methylVioletConcentration, data =
methylViolet.df)

Residuals:

1 2 3 4 5 6 7

0.05000 -0.01429 -0.17857 0.15714 0.09286 -0.17143 0.06429

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.185714 0.120374 1.543 0.184

methylVioletConcentration 0.096429 0.002692 35.825 3.19e-07

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Residual standard error: 0.1424 on 5 degrees of freedom

Multiple R-squared: 0.9961, Adjusted R-squared: 0.9953

F-statistic: 1283 on 1 and 5 DF, p-value: 3.19e-07

##Graphing the results

#Graphing the raw data with the unweighted linear model

require("ggplot2")

Loading required package: ggplot2

Warning: package ‘ggplot2’ was built under R version 3.6.3

69

5A <- Bringing it all Together

ggplot(methylViolet.df, aes(x = methylVioletConcentration,
y = absorbance)) + geom_point (shape = 19) + labs(title =
"Calibration plot for methyl violet", x = "Methyl violet
concentration (mg/L)", y = "Absorbance") + geom_abline(in-
tercept = 0.1857, slope = 0.0964, color = "violet")

#Graphing the residuals

plot(residuals(methylVioletCalibration.lm))

##Residuals show no signs of non-constant variance or a
trend, so happy with the unweighted model

70

R Chemometrics Module

Example 4: Minerals in milk

Data was collected on the mineral composition (Calcium (Ca), Manganese
(Mn), and Zinc (Zn)) of 39 Buffalo milk samples. The raw data for this is shown
in the table below, but in this example the data has been put into a .csv file for

importing.

Ca Mn Zn

161.39 69.8 49.53
230.54 119.99 49.77
252.1 120.82 50.15
324.61 113.08 48.16
239.94 112.88 50.74
190.82 132.44 51.1
311.66 140.95 51.37
243.82 151.69 51.66
367.42 195.6 49.07
290.91 205.41 48.2
339.67 190.09 49.76
272.1 202.04 48.29
394.26 250.24 48.53
383.87 240.85 51.65
165.3 175.87 55.07
128.5 165.84 55.07
125.65 200.24 55.63
109.21 210.93 55.42
165.8 218.47 56.29
160.14 222.54 56.38
116.11 210.08 56.53
164.29 251.94 56.98
154.9 266.15 54.32
108.48 273.37 54.28
101.92 267.23 55.45
193.49 309.72 55.61
189.5 280.11 55.82
162.72 289.9 55.77
180.2 314.24 54.91
356.16 375.54 43.41
392.41 377.96 42.36
381.3 379.79 40.04
372.67 383.4 43.79
357.97 356.52 40.8
371.55 375.79 43.28
382.13 365.17 43.61
362.01 375.18 41.74
354.71 356.82 44.47
375.74 352.51 43.39

->->

71

5A <- Bringing it all Together

Are there any underlying trends or groupings in the Buffalo milk and are there
any relationships between the levels of the minerals?

##First loading in the buffalo milk .csv file

buffaloMilk.df <- read.table(file.choose(), sep=",", header =
TRUE)

##Conducting HCA on the data

#Mean-centering and scaling the data, then converting it
into a matrix

buffaloMilkMeanCentre.df <- scale(buffaloMilk.df, center =
TRUE, scale = TRUE)

buffaloMilkEuclid.mat <- dist(buffaloMilkMeanCentre.df)

#Conducting HCA and plotting the results

buffaloMilk.HCA <- hclust(buffaloMilkEuclid.mat)

plot(buffaloMilk.HCA)

##Conducting PCA on the data

#Conducting PCA and printing the results

buffaloMilk.pca <- prcomp(buffaloMilk.df, center = TRUE, scale
= TRUE)

print(buffaloMilk.pca)

Standard deviations (1, .., p=3):

[1] 1.4926552 0.7996825 0.3639896

Rotation (n x k) = (3 x 3):

PC1 PC2 PC3

Ca 0.6132685 -0.3957004 -0.68361022

Mn 0.4783788 0.8747547 -0.07718752

Zn -0.6285344 0.2796880 -0.72575420

summary(buffaloMilk.pca)

Importance of components:

PC1 PC2 PC3

Standard deviation 1.4927 0.7997 0.36399

Proportion of Variance 0.7427 0.2132 0.04416

Cumulative Proportion 0.7427 0.9558 1.00000

#Plotting the results of the PCA (using the factoextra pack-
age)

72

R Chemometrics Module

require("factoextra")

Loading required package: factoextra

Warning: package ‘factoextra’ was built under R version
3.6.3

Loading required package: ggplot2

Warning: package ‘ggplot2’ was built under R version 3.6.3

Welcome! Want to learn more? See two factoextra-related
books at https://goo.gl/ve3WBa

fviz_screeplot(buffaloMilk.pca, ncp = 10)

73

5A <- Bringing it all Together

fviz_pca_var(buffaloMilk.pca)

fviz_pca_ind(buffaloMilk.pca, geom = c("point", "text"),
pointsize = 3)

74

R Chemometrics Module

fviz_pca_biplot(buffaloMilk.pca)

75

Going through all the previous sections, you have now learned all of the fundamental
processes in R to analyse and assess your data - well done! You have also been
shown how to apply what you have learnt to real data, following appropiate workflows.
You are now more than ready to use R in your own work and conduct a wide range of
analyses - this section gives some suggestions of where to, from here, offering tips and
ways to continue on your R journey. Thank you and good luck!

Section 5B:

Moving Forward

76

R Chemometrics Module

Part I Debugging your code/interpreting errors

You will soon discover that it is inevitable that
you will get some errors when you are using R
– these normally come in dreaded red writing
in the console. In this module I have tried to
describe to you common causes of errors and
given you tips to hopefully not make them in
the first place.

If you do get an error, try your best to read
the error message (which can sometimes be
very challenging – they are not always very
descriptive or diagnostic). Re-read your code
to make sure that there is not something amiss
like an errant (or absent) capital letter or space

somewhere. If you cannot find the source of
the error, try pasting the error into google and
seeing what links come up – chances are,
someone has asked on an online forum (see
below) what the error means and there are often
some very helpful solutions or suggestions on
what is wrong and how it can be fixed.

With time and practice you will start being
able to identify and figure out errors. Most
importantly, do not be disheartened if you get
them – it is all part of learning and they happen
(regularly!) to the best of us.

Part II Online community – R help forums

Being an open-source software that users all around the world use and even contribute
to, it should be no surprise that R has a big online community, ranging from blogs to
help forums, all of which have a range of tips and tricks.

If you want to learn more about R, what it can do and useful snippets of
analysis and techniques, R-bloggers (https://www.r-bloggers.com/) is a
great place to regularly visit.

There are other R communities and how-to’s out there, including https://
community.rstudio.com/ and http://www.sthda.com/english/

Help forums like stackoverflow (https://stackoverflow.com/questions/
tagged/r) and statckexchange (https://stats.stackexchange.com/questions/
tagged/r) are very useful. If I have any trouble or want to do something in R,
I will often just google my question and links to the same or similar question
posted in one of these sites.

Available data repositories/recommended
data sets

Part III

To practice the skills and techniques that you have been taught, there are a range of
data sets that you can use.

R itself has a large range of built-in data sets. To see what data sets are available in R
and then load one of the in-built data sets, you can do the following:

->->

77

5B <- Moving Forward

To load (and view) an in-built R data set, the code is:

data()

data("iris")

head("iris")

iris

The term "data()" instructs R to list all the in-built data sets it has available for use

The term "data("...")" loads the specified dataset in R (in this case, iris)– this needs
to be done every time you open R and use the dataset.

The term "head("...")" instructs R to show the first 6 lines of the dataset (in this case
the iris dataset).

The term "iris" instructs R to show the entire the dataset.

Of the available in-built R data sets, I have included a list of some appropriate data sets
and what analysis you can use them to practice:

PlantGrowth

	 This data set gives the plant yield (measured by dried weight of
	 plants) obtained under a control and two different treatment
	 conditions.

	 This is a great data set to work on to practice your ANOVA analysis
	 (Section 2C Part III)

InsectSprays

	 This data set gives the number of insects present after using different
	 types of pesticide.

	 This is a great data set to work on to practice your ANOVA analysis
	 (Section 2C Part III)

Formaldehyde

	 This data set gives the results to prepare a standard addition curve
	 for the analysis of formaldehyde by the addition of chromatropic
	 acid and concentrated sulphuric acid. The measured response is the
	 optical density for the resulting purple color by a spectrophotometer.

	 This is a great data set to work with to practice your regression
	 analysis (Section 2D Part I).

mtcars

	 This data set is one that was extracted from the 1974 Motor Trend US
	 magazine. The data set has 11 variables for 32 different cars, including
	 fuel consumption and aspects of automobile design and performance.

	 This is a great data set to work with to practice your unsupervised
	 learning analysis (Section 3A).

rock

	 This data set includes measurements on 48 rock samples from a
	 petroleum reservoir. Measurements for each sample includes;
	 permeability, total area of pores, total perimeter of pores, and shape.

	 This is a great data set to work with to practice your unsupervised
	 learning analysis (Section 3A).

78

R Chemometrics Module

USArrests

	 This data set is states the arrests per 100,000 residents for assault,
	 murder, and rape in each of the 50 US states in 1973 and also gives
	 the percent of the population living in urban areas.

	 This is a great data set to work with to practice your unsupervised
	 learning analysis (Section 3A).

trees

	 This data set is made up of measurements of the diameter (labelled
	 Girth in the data set), height and volume of timber in 31 felled black
	 cherry trees.

	 This is a great data set to work with to practice your unsupervised
	 learning analysis (Section 3A).

iris

	 This data set gives the measurements of the variables; sepal length,
	 sepal width, petal length and petal width, respectively, for 50 flower
	 samples from each of three species (setosa, versicolor, and virginica)
	 of iris.

	 This is a great data set to work with to practice your supervised
	 learning analysis (Section 3B) once you split it into training and test
	 datasets.

There are other data sets that are accessible in R, but they are associated with packages
in R and therefore the parent package needs to be downloaded to access them. For a
fairly comprehensive list of these available data sets and the package that they belong
to, see this list: https://vincentarelbundock.github.io/Rdatasets/datasets.html

This site gives a brief summary of the number and types of variables/
observations in the data set, as well as the package that it can be found in.

This site also, very conveniently, allows you to download the .csv file of the
data set so you do not need to install the parent package and instead can
import the downloaded .csv file.

Otherwise, there are a large number of data repositories out there that you can
manipulate and import into R to then analyse. A summary of the focus and features
of other repositories can be found here: https://sr.ithaka.org/blog/data-repository-
platforms-a-primer/ and others can be found through searching yourself.

You now have the tools and skills to analyse and understand an extraordinary number
of data sets – go and enjoy!

79

5B <- Moving Forward

80

R Chemometrics Module

Index of functions

abline()				 31

aes()		 49-52,54-56

anova()				 28

aov()				 28

as.factor()			 42

biplot()				 39

boxplot()			 18,21,22

c()					 8

colors()				 19

confidence.interval()	 15

data()			 	 77

data.frame()		 10, 50-52

density()				 20

dist()				 38

dixon.test()			 14

fviz_pca_biplot()		 57

fviz_pca_ind()			 57

fviz_pca_var()			 57

fviz_screeplot()		 57

geom_abline()			 56

geom_bar()			 51

geom_boxplot()			 50,55

geom_density()			 52

geom_dotplot()			 54

geom_jitter()			 49

geom_point()			 56

ggplot()		 49-52,54-56

grubbs.test()			 14

head()				 77

hclust()				 38

hist()				 19

install.packages()		 7

knn()				 44

mean()				 14

labs()		 49-52,54-56

lda()				 46

lines()				 34

lm()				 28,30,31

nls()				 34

plot()	 20,24,31,32,34,38,46

prcomp()				 39

predict()			 43,46,47

print()		 39,43,44,46,47

qda()				 47

randomForest()			 43

rbind()				 45

read.table(...)		 1

require()				 v7

residuals()			 32

scale()				 38,45

screeplot()			 39

sd()					 14

summary()		 30, 31,34,39

stripchart()			 17,23

t.test()				 26,27

table()		 43,44,46,47

TukeyHSD()			 28

var()				 14

var.test()			 27

varImpPlot()			 43

81

1 <- Getting functional in R

Index of packages

class				 44

factoextra			 57

ggplot2				 48-56

MASS					 46,47

outliers				 14

randomForest			 43

1st edition, November 2022.

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

	Preface
	Outline
	Section 1: Getting Functional in R
	I - Installing and setting up R and R Studio
	II - Getting to know R and R studio
	III - How to start a project and save your work
	IV - Features in R
	V - Data structures and entering data into R
	VI - Exporting output from R

	Section 2A: Basic Statistical Analysis
	I - Outlier detection
	II - Calculating descriptive statistics
	III - Calculating confidence intervals

	Section 2B: Basic Graphing: Data Visualisation
	I - One-dimensional plots
	II - Side-by-side plots
	III - Scatter plots

	Section 2C: Significance Tests
	I - t-tests
	II - F-test
	III - ANOVA

	Section 2D: Regression Analysis
	I - Unweighted linear regression
	II - Weigthed linear regression
	III - Linear model graphics
	IV - Non-linear regression

	Section 3A: Using R for Unsupervised Learning
	I - Data manipulation and large data set management
	II - Conducting Hierachical Cluster Analysis (HCA)
	III - Conducting Principal Component Analysis (PCA)

	Section 3B: Using R for Supervised Learning
	I - Creating training and test sets
	II - Random forest
	III - kNN (k Nearest Neighbours) analysis
	IV - Discriminant analysis

	Section 4: Advanced Graphing/Visual Representation
	I - ggplot2 package - One dimensional plots revisited
	II - ggplot2 package - Side-by-side plots revisited
	III - ggplot2 package - Regression revisited
	IV - The factoextra package - revisiting the PCA plots

	Section 5A: Bringing it all Together
	I - Statistics workflows
	II - Worked examples

	Section 5B: Moving Forward
	I - Debugging your code and interpreting errors
	II - Online community - R help forums
	III - Available data repositories / recommended data sets

